Newer
Older
* Copyright (C) 2008 The Android Open Source Project
* Licensed under the Apache License, Version 2.0 (the "License"); you may not
* use this file except in compliance with the License. You may obtain a copy of
* the License at
* http://www.apache.org/licenses/LICENSE-2.0
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations under
* the License.
*/
package com.android.inputmethod.latin;
import android.content.Context;
import android.text.AutoText;
import android.text.TextUtils;
import android.util.Log;
import android.view.View;
import java.util.ArrayList;
import java.util.Arrays;
* This class loads a dictionary and provides a list of suggestions for a given sequence of
* characters. This includes corrections and completions.
*/
public class Suggest implements Dictionary.WordCallback {
public static final String TAG = Suggest.class.getSimpleName();
public static final int APPROX_MAX_WORD_LENGTH = 32;
public static final int CORRECTION_NONE = 0;
public static final int CORRECTION_BASIC = 1;
public static final int CORRECTION_FULL = 2;
public static final int CORRECTION_FULL_BIGRAM = 3;
/**
* Words that appear in both bigram and unigram data gets multiplier ranging from
* BIGRAM_MULTIPLIER_MIN to BIGRAM_MULTIPLIER_MAX depending on the frequency score from
* bigram data.
*/
public static final double BIGRAM_MULTIPLIER_MIN = 1.2;
public static final double BIGRAM_MULTIPLIER_MAX = 1.5;
/**
* Maximum possible bigram frequency. Will depend on how many bits are being used in data
* structure. Maximum bigram freqeuncy will get the BIGRAM_MULTIPLIER_MAX as the multiplier.
*/
public static final int MAXIMUM_BIGRAM_FREQUENCY = 127;
public static final int DIC_USER_TYPED = 0;
public static final int DIC_MAIN = 1;
public static final int DIC_USER = 2;
public static final int DIC_AUTO = 3;
public static final int DIC_CONTACTS = 4;
// If you add a type of dictionary, increment DIC_TYPE_LAST_ID
public static final int DIC_TYPE_LAST_ID = 4;
static final int LARGE_DICTIONARY_THRESHOLD = 200 * 1000;
Amith Yamasani
committed
private static boolean DBG = LatinImeLogger.sDBG;
Amith Yamasani
committed
private BinaryDictionary mMainDict;
private Dictionary mUserDictionary;
private Dictionary mAutoDictionary;
private Dictionary mContactsDictionary;
private Dictionary mUserBigramDictionary;
private int mPrefMaxSuggestions = 12;
private static final int PREF_MAX_BIGRAMS = 60;
private boolean mAutoTextEnabled;
private double mAutoCorrectionThreshold;
private int[] mPriorities = new int[mPrefMaxSuggestions];
private int[] mBigramPriorities = new int[PREF_MAX_BIGRAMS];
// Handle predictive correction for only the first 1280 characters for performance reasons
// If we support scripts that need latin characters beyond that, we should probably use some
// kind of a sparse array or language specific list with a mapping lookup table.
// 1280 is the size of the BASE_CHARS array in ExpandableDictionary, which is a basic set of
// latin characters.
private int[] mNextLettersFrequencies = new int[1280];
private ArrayList<CharSequence> mSuggestions = new ArrayList<CharSequence>();
ArrayList<CharSequence> mBigramSuggestions = new ArrayList<CharSequence>();
private ArrayList<CharSequence> mStringPool = new ArrayList<CharSequence>();
private String mLowerOriginalWord;
Ken Wakasa
committed
// TODO: Remove these member variables by passing more context to addWord() callback method
private boolean mIsFirstCharCapitalized;
private boolean mIsAllUpperCase;
private int mCorrectionMode = CORRECTION_BASIC;
public Suggest(Context context, int dictionaryResId) {
mMainDict = BinaryDictionary.initDictionary(context, dictionaryResId, DIC_MAIN);
initPool();
}
private void initPool() {
for (int i = 0; i < mPrefMaxSuggestions; i++) {
StringBuilder sb = new StringBuilder(getApproxMaxWordLength());
mStringPool.add(sb);
}
}
public void setAutoTextEnabled(boolean enabled) {
mAutoTextEnabled = enabled;
}
public int getCorrectionMode() {
return mCorrectionMode;
}
public void setCorrectionMode(int mode) {
mCorrectionMode = mode;
}
Amith Yamasani
committed
public boolean hasMainDictionary() {
return mMainDict != null && mMainDict.getSize() > LARGE_DICTIONARY_THRESHOLD;
Amith Yamasani
committed
}
public int getApproxMaxWordLength() {
return APPROX_MAX_WORD_LENGTH;
}
/**
* Sets an optional user dictionary resource to be loaded. The user dictionary is consulted
* before the main dictionary, if set.
*/
public void setUserDictionary(Dictionary userDictionary) {
mUserDictionary = userDictionary;
}
/**
* Sets an optional contacts dictionary resource to be loaded.
*/
public void setContactsDictionary(Dictionary userDictionary) {
mContactsDictionary = userDictionary;
}
public void setAutoDictionary(Dictionary autoDictionary) {
mAutoDictionary = autoDictionary;
}
public void setUserBigramDictionary(Dictionary userBigramDictionary) {
mUserBigramDictionary = userBigramDictionary;
}
public void setAutoCorrectionThreshold(double threshold) {
mAutoCorrectionThreshold = threshold;
public boolean isAggressiveAutoCorrectionMode() {
return (mAutoCorrectionThreshold == 0);
}
/**
* Number of suggestions to generate from the input key sequence. This has
* to be a number between 1 and 100 (inclusive).
* @param maxSuggestions
* @throws IllegalArgumentException if the number is out of range
*/
public void setMaxSuggestions(int maxSuggestions) {
if (maxSuggestions < 1 || maxSuggestions > 100) {
throw new IllegalArgumentException("maxSuggestions must be between 1 and 100");
}
mPrefMaxSuggestions = maxSuggestions;
mPriorities = new int[mPrefMaxSuggestions];
mBigramPriorities = new int[PREF_MAX_BIGRAMS];
collectGarbage(mSuggestions, mPrefMaxSuggestions);
while (mStringPool.size() < mPrefMaxSuggestions) {
StringBuilder sb = new StringBuilder(getApproxMaxWordLength());
mStringPool.add(sb);
}
}
* Returns a object which represents suggested words that match the list of character codes
* passed in. This object contents will be overwritten the next time this function is called.
* @param view a view for retrieving the context for AutoText
* @param wordComposer contains what is currently being typed
* @param prevWordForBigram previous word (used only for bigram)
* @return suggested words object.
public SuggestedWords getSuggestions(View view, WordComposer wordComposer,
CharSequence prevWordForBigram) {
return getSuggestedWordBuilder(view, wordComposer, prevWordForBigram).build();
}
// TODO: cleanup dictionaries looking up and suggestions building with SuggestedWords.Builder
public SuggestedWords.Builder getSuggestedWordBuilder(View view, WordComposer wordComposer,
CharSequence prevWordForBigram) {
LatinImeLogger.onStartSuggestion(prevWordForBigram);
Ken Wakasa
committed
mIsFirstCharCapitalized = wordComposer.isFirstCharCapitalized();
mIsAllUpperCase = wordComposer.isAllUpperCase();
collectGarbage(mSuggestions, mPrefMaxSuggestions);
Arrays.fill(mPriorities, 0);
Arrays.fill(mNextLettersFrequencies, 0);
// Save a lowercase version of the original word
CharSequence typedWord = wordComposer.getTypedWord();
if (typedWord != null) {
final String typedWordString = typedWord.toString();
typedWord = typedWordString;
mLowerOriginalWord = typedWordString.toLowerCase();
// Treating USER_TYPED as UNIGRAM suggestion for logging now.
LatinImeLogger.onAddSuggestedWord(typedWordString, Suggest.DIC_USER_TYPED,
Dictionary.DataType.UNIGRAM);
} else {
mLowerOriginalWord = "";
}
if (wordComposer.size() == 1 && (mCorrectionMode == CORRECTION_FULL_BIGRAM
|| mCorrectionMode == CORRECTION_BASIC)) {
// At first character typed, search only the bigrams
Arrays.fill(mBigramPriorities, 0);
collectGarbage(mBigramSuggestions, PREF_MAX_BIGRAMS);
if (!TextUtils.isEmpty(prevWordForBigram)) {
CharSequence lowerPrevWord = prevWordForBigram.toString().toLowerCase();
if (mMainDict != null && mMainDict.isValidWord(lowerPrevWord)) {
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
prevWordForBigram = lowerPrevWord;
}
if (mUserBigramDictionary != null) {
mUserBigramDictionary.getBigrams(wordComposer, prevWordForBigram, this,
mNextLettersFrequencies);
}
if (mContactsDictionary != null) {
mContactsDictionary.getBigrams(wordComposer, prevWordForBigram, this,
mNextLettersFrequencies);
}
if (mMainDict != null) {
mMainDict.getBigrams(wordComposer, prevWordForBigram, this,
mNextLettersFrequencies);
}
char currentChar = wordComposer.getTypedWord().charAt(0);
char currentCharUpper = Character.toUpperCase(currentChar);
int count = 0;
int bigramSuggestionSize = mBigramSuggestions.size();
for (int i = 0; i < bigramSuggestionSize; i++) {
if (mBigramSuggestions.get(i).charAt(0) == currentChar
|| mBigramSuggestions.get(i).charAt(0) == currentCharUpper) {
int poolSize = mStringPool.size();
StringBuilder sb = poolSize > 0 ?
(StringBuilder) mStringPool.remove(poolSize - 1)
: new StringBuilder(getApproxMaxWordLength());
sb.setLength(0);
sb.append(mBigramSuggestions.get(i));
mSuggestions.add(count++, sb);
if (count > mPrefMaxSuggestions) break;
}
}
}
} else if (wordComposer.size() > 1) {
// At second character typed, search the unigrams (scores being affected by bigrams)
if (mUserDictionary != null || mContactsDictionary != null) {
if (mUserDictionary != null) {
mUserDictionary.getWords(wordComposer, this, mNextLettersFrequencies);
}
if (mContactsDictionary != null) {
mContactsDictionary.getWords(wordComposer, this, mNextLettersFrequencies);
}
if (mSuggestions.size() > 0 && isValidWord(typedWord)
&& (mCorrectionMode == CORRECTION_FULL
|| mCorrectionMode == CORRECTION_FULL_BIGRAM)) {
if (DBG) {
Log.d(TAG, "Auto corrected by CORRECTION_FULL.");
}
}
}
if (mMainDict != null) mMainDict.getWords(wordComposer, this, mNextLettersFrequencies);
if ((mCorrectionMode == CORRECTION_FULL || mCorrectionMode == CORRECTION_FULL_BIGRAM)
&& mSuggestions.size() > 0 && mPriorities.length > 0) {
// TODO: when the normalized score of the first suggestion is nearly equals to
// the normalized score of the second suggestion, behave less aggressive.
final double normalizedScore = Utils.calcNormalizedScore(
typedWord, mSuggestions.get(0), mPriorities[0]);
Log.d(TAG, "Normalized " + typedWord + "," + mSuggestions.get(0) + ","
+ mPriorities[0] + ", " + normalizedScore
+ "(" + mAutoCorrectionThreshold + ")");
if (normalizedScore >= mAutoCorrectionThreshold) {
if (DBG) {
Log.d(TAG, "Auto corrected by S-threthhold.");
}
}
}
if (typedWord != null) {
mSuggestions.add(0, typedWord.toString());
if (mAutoTextEnabled) {
int i = 0;
int max = 6;
// Don't autotext the suggestions from the dictionaries
if (mCorrectionMode == CORRECTION_BASIC) max = 1;
while (i < mSuggestions.size() && i < max) {
String suggestedWord = mSuggestions.get(i).toString().toLowerCase();
CharSequence autoText =
AutoText.get(suggestedWord, 0, suggestedWord.length(), view);
// Is there an AutoText (also known as Quick Fixes) correction?
boolean canAdd = autoText != null;
// Capitalize as needed
final int autoTextLength = autoText != null ? autoText.length() : 0;
if (autoTextLength > 0 && (mIsAllUpperCase || mIsFirstCharCapitalized)) {
int poolSize = mStringPool.size();
StringBuilder sb = poolSize > 0 ? (StringBuilder) mStringPool.remove(
poolSize - 1) : new StringBuilder(getApproxMaxWordLength());
sb.setLength(0);
if (mIsAllUpperCase) {
sb.append(autoText.toString().toUpperCase());
} else if (mIsFirstCharCapitalized) {
sb.append(Character.toUpperCase(autoText.charAt(0)));
if (autoTextLength > 1) {
sb.append(autoText.subSequence(1, autoTextLength));
}
}
autoText = sb.toString();
}
// Is that correction already the current prediction (or original word)?
canAdd &= !TextUtils.equals(autoText, mSuggestions.get(i));
// Is that correction already the next predicted word?
if (canAdd && i + 1 < mSuggestions.size() && mCorrectionMode != CORRECTION_BASIC) {
canAdd &= !TextUtils.equals(autoText, mSuggestions.get(i + 1));
}
if (canAdd) {
if (DBG) {
Log.d(TAG, "Auto corrected by AUTOTEXT.");
}
mSuggestions.add(i + 1, autoText);
i++;
}
i++;
}
}
return new SuggestedWords.Builder().addWords(mSuggestions, null);
public int[] getNextLettersFrequencies() {
return mNextLettersFrequencies;
}
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
private void removeDupes() {
final ArrayList<CharSequence> suggestions = mSuggestions;
if (suggestions.size() < 2) return;
int i = 1;
// Don't cache suggestions.size(), since we may be removing items
while (i < suggestions.size()) {
final CharSequence cur = suggestions.get(i);
// Compare each candidate with each previous candidate
for (int j = 0; j < i; j++) {
CharSequence previous = suggestions.get(j);
if (TextUtils.equals(cur, previous)) {
removeFromSuggestions(i);
i--;
break;
}
}
i++;
}
}
private void removeFromSuggestions(int index) {
CharSequence garbage = mSuggestions.remove(index);
if (garbage != null && garbage instanceof StringBuilder) {
mStringPool.add(garbage);
}
}
public boolean hasAutoCorrection() {
return mHasAutoCorrection;
private boolean compareCaseInsensitive(final String mLowerOriginalWord,
final char[] word, final int offset, final int length) {
final int originalLength = mLowerOriginalWord.length();
if (originalLength == length && Character.isUpperCase(word[offset])) {
for (int i = 0; i < originalLength; i++) {
if (mLowerOriginalWord.charAt(i) != Character.toLowerCase(word[offset+i])) {
return false;
}
}
return true;
}
return false;
}
public boolean addWord(final char[] word, final int offset, final int length, int freq,
final int dicTypeId, final Dictionary.DataType dataType) {
Dictionary.DataType dataTypeForLog = dataType;
ArrayList<CharSequence> suggestions;
int[] priorities;
int prefMaxSuggestions;
if(dataType == Dictionary.DataType.BIGRAM) {
suggestions = mBigramSuggestions;
priorities = mBigramPriorities;
prefMaxSuggestions = PREF_MAX_BIGRAMS;
} else {
suggestions = mSuggestions;
priorities = mPriorities;
prefMaxSuggestions = mPrefMaxSuggestions;
}
int pos = 0;
// Check if it's the same word, only caps are different
if (compareCaseInsensitive(mLowerOriginalWord, word, offset, length)) {
pos = 0;
} else {
if (dataType == Dictionary.DataType.UNIGRAM) {
// Check if the word was already added before (by bigram data)
int bigramSuggestion = searchBigramSuggestion(word,offset,length);
if(bigramSuggestion >= 0) {
dataTypeForLog = Dictionary.DataType.BIGRAM;
// turn freq from bigram into multiplier specified above
double multiplier = (((double) mBigramPriorities[bigramSuggestion])
/ MAXIMUM_BIGRAM_FREQUENCY)
* (BIGRAM_MULTIPLIER_MAX - BIGRAM_MULTIPLIER_MIN)
+ BIGRAM_MULTIPLIER_MIN;
/* Log.d(TAG,"bigram num: " + bigramSuggestion
+ " wordB: " + mBigramSuggestions.get(bigramSuggestion).toString()
+ " currentPriority: " + freq + " bigramPriority: "
+ mBigramPriorities[bigramSuggestion]
+ " multiplier: " + multiplier); */
freq = (int)Math.round((freq * multiplier));
}
}
// Check the last one's priority and bail
if (priorities[prefMaxSuggestions - 1] >= freq) return true;
while (pos < prefMaxSuggestions) {
if (priorities[pos] < freq
|| (priorities[pos] == freq && length < suggestions.get(pos).length())) {
break;
}
pos++;
}
}
if (pos >= prefMaxSuggestions) {
return true;
}
System.arraycopy(priorities, pos, priorities, pos + 1, prefMaxSuggestions - pos - 1);
priorities[pos] = freq;
int poolSize = mStringPool.size();
StringBuilder sb = poolSize > 0 ? (StringBuilder) mStringPool.remove(poolSize - 1)
: new StringBuilder(getApproxMaxWordLength());
sb.setLength(0);
Ken Wakasa
committed
if (mIsAllUpperCase) {
sb.append(new String(word, offset, length).toUpperCase());
} else if (mIsFirstCharCapitalized) {
sb.append(Character.toUpperCase(word[offset]));
if (length > 1) {
sb.append(word, offset + 1, length - 1);
}
} else {
sb.append(word, offset, length);
}
suggestions.add(pos, sb);
if (suggestions.size() > prefMaxSuggestions) {
CharSequence garbage = suggestions.remove(prefMaxSuggestions);
if (garbage instanceof StringBuilder) {
mStringPool.add(garbage);
}
} else {
LatinImeLogger.onAddSuggestedWord(sb.toString(), dicTypeId, dataTypeForLog);
}
return true;
}
private int searchBigramSuggestion(final char[] word, final int offset, final int length) {
// TODO This is almost O(n^2). Might need fix.
// search whether the word appeared in bigram data
int bigramSuggestSize = mBigramSuggestions.size();
for(int i = 0; i < bigramSuggestSize; i++) {
if(mBigramSuggestions.get(i).length() == length) {
boolean chk = true;
for(int j = 0; j < length; j++) {
if(mBigramSuggestions.get(i).charAt(j) != word[offset+j]) {
chk = false;
break;
}
}
if(chk) return i;
}
}
return -1;
}
public boolean isValidWord(final CharSequence word) {
if (word == null || word.length() == 0 || mMainDict == null) {
return false;
}
return mMainDict.isValidWord(word)
|| (mUserDictionary != null && mUserDictionary.isValidWord(word))
|| (mAutoDictionary != null && mAutoDictionary.isValidWord(word))
|| (mContactsDictionary != null && mContactsDictionary.isValidWord(word));
private void collectGarbage(ArrayList<CharSequence> suggestions, int prefMaxSuggestions) {
int poolSize = mStringPool.size();
int garbageSize = suggestions.size();
while (poolSize < prefMaxSuggestions && garbageSize > 0) {
CharSequence garbage = suggestions.get(garbageSize - 1);
if (garbage != null && garbage instanceof StringBuilder) {
mStringPool.add(garbage);
poolSize++;
}
garbageSize--;
}
if (poolSize == prefMaxSuggestions + 1) {
Log.w("Suggest", "String pool got too big: " + poolSize);
}
public void close() {
if (mMainDict != null) {
mMainDict.close();
mMainDict = null;
}
if (mUserDictionary != null) {
mUserDictionary.close();
mUserDictionary = null;
}
if (mUserBigramDictionary != null) {
mUserBigramDictionary.close();
mUserBigramDictionary = null;
}
if (mContactsDictionary != null) {
mContactsDictionary.close();
mContactsDictionary = null;
}
if (mAutoDictionary != null) {
mAutoDictionary.close();
mAutoDictionary = null;