Newer
Older
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
-10683391,-20352381,15557840,-31072141,-5019061,},
{-6283632,-2259834,-4674247,-4598977,-4089240,
12435688,-31278303,1060251,6256175,10480726,},
{-13871026,2026300,-21928428,-2741605,-2406664,
-8034988,7355518,15733500,-23379862,7489131,},},
{{6883359,695140,23196907,9644202,-33430614,
11354760,-20134606,6388313,-8263585,-8491918,},
{-7716174,-13605463,-13646110,14757414,-19430591,
-14967316,10359532,-11059670,-21935259,12082603,},
{-11253345,-15943946,10046784,5414629,24840771,
8086951,-6694742,9868723,15842692,-16224787,},},
{{9639399,11810955,-24007778,-9320054,3912937,
-9856959,996125,-8727907,-8919186,-14097242,},
{7248867,14468564,25228636,-8795035,14346339,
8224790,6388427,-7181107,6468218,-8720783,},
{15513115,15439095,7342322,-10157390,18005294,
-7265713,2186239,4884640,10826567,7135781,},},
{{-14204238,5297536,-5862318,-6004934,28095835,
4236101,-14203318,1958636,-16816875,3837147,},
{-5511166,-13176782,-29588215,12339465,15325758,
-15945770,-8813185,11075932,-19608050,-3776283,},
{11728032,9603156,-4637821,-5304487,-7827751,
2724948,31236191,-16760175,-7268616,14799772,},},
{{-28842672,4840636,-12047946,-9101456,-1445464,
381905,-30977094,-16523389,1290540,12798615,},
{27246947,-10320914,14792098,-14518944,5302070,
-8746152,-3403974,-4149637,-27061213,10749585,},
{25572375,-6270368,-15353037,16037944,1146292,
32198,23487090,9585613,24714571,-1418265,},},
{{19844825,282124,-17583147,11004019,-32004269,
-2716035,6105106,-1711007,-21010044,14338445,},
{8027505,8191102,-18504907,-12335737,25173494,
-5923905,15446145,7483684,-30440441,10009108,},
{-14134701,-4174411,10246585,-14677495,33553567,
-14012935,23366126,15080531,-7969992,7663473,},},
};
static const ge_precomp b_comb_high[8] = {
{{33055887,-4431773,-521787,6654165,951411,
-6266464,-5158124,6995613,-5397442,-6985227,},
{4014062,6967095,-11977872,3960002,8001989,
5130302,-2154812,-1899602,-31954493,-16173976,},
{16271757,-9212948,23792794,731486,-25808309,
-3546396,6964344,-4767590,10976593,10050757,},},
{{2533007,-4288439,-24467768,-12387405,-13450051,
14542280,12876301,13893535,15067764,8594792,},
{20073501,-11623621,3165391,-13119866,13188608,
-11540496,-10751437,-13482671,29588810,2197295,},
{-1084082,11831693,6031797,14062724,14748428,
-8159962,-20721760,11742548,31368706,13161200,},},
{{2050412,-6457589,15321215,5273360,25484180,
124590,-18187548,-7097255,-6691621,-14604792,},
{9938196,2162889,-6158074,-1711248,4278932,
-2598531,-22865792,-7168500,-24323168,11746309,},
{-22691768,-14268164,5965485,9383325,20443693,
5854192,28250679,-1381811,-10837134,13717818,},},
{{-8495530,16382250,9548884,-4971523,-4491811,
-3902147,6182256,-12832479,26628081,10395408,},
{27329048,-15853735,7715764,8717446,-9215518,
-14633480,28982250,-5668414,4227628,242148,},
{-13279943,-7986904,-7100016,8764468,-27276630,
3096719,29678419,-9141299,3906709,11265498,},},
{{11918285,15686328,-17757323,-11217300,-27548967,
4853165,-27168827,6807359,6871949,-1075745,},
{-29002610,13984323,-27111812,-2713442,28107359,
-13266203,6155126,15104658,3538727,-7513788,},
{14103158,11233913,-33165269,9279850,31014152,
4335090,-1827936,4590951,13960841,12787712,},},
{{1469134,-16738009,33411928,13942824,8092558,
-8778224,-11165065,1437842,22521552,-2792954,},
{31352705,-4807352,-25327300,3962447,12541566,
-9399651,-27425693,7964818,-23829869,5541287,},
{-25732021,-6864887,23848984,3039395,-9147354,
6022816,-27421653,10590137,25309915,-1584678,},},
{{-22951376,5048948,31139401,-190316,-19542447,
-626310,-17486305,-16511925,-18851313,-12985140,},
{-9684890,14681754,30487568,7717771,-10829709,
9630497,30290549,-10531496,-27798994,-13812825,},
{5827835,16097107,-24501327,12094619,7413972,
11447087,28057551,-1793987,-14056981,4359312,},},
{{26323183,2342588,-21887793,-1623758,-6062284,
2107090,-28724907,9036464,-19618351,-13055189,},
{-29697200,14829398,-4596333,14220089,-30022969,
2955645,12094100,-13693652,-5941445,7047569,},
{-3201977,14413268,-12058324,-16417589,-9035655,
-7224648,9258160,1399236,30397584,-5684634,},},
};
static void lookup_add(ge *p, ge_precomp *tmp_c, fe tmp_a, fe tmp_b,
const ge_precomp comb[8], const u8 scalar[32], int i)
{
u8 teeth = (u8)((scalar_bit(scalar, i) ) +
(scalar_bit(scalar, i + 32) << 1) +
(scalar_bit(scalar, i + 64) << 2) +
(scalar_bit(scalar, i + 96) << 3));
u8 high = teeth >> 3;
u8 index = (teeth ^ (high - 1)) & 7;
FOR (j, 0, 8) {
i32 select = 1 & (((j ^ index) - 1) >> 8);
fe_ccopy(tmp_c->Yp, comb[j].Yp, select);
fe_ccopy(tmp_c->Ym, comb[j].Ym, select);
fe_ccopy(tmp_c->T2, comb[j].T2, select);
}
fe_neg(tmp_a, tmp_c->T2);
fe_cswap(tmp_c->T2, tmp_a , high ^ 1);
fe_cswap(tmp_c->Yp, tmp_c->Ym, high ^ 1);
ge_madd(p, p, tmp_c, tmp_a, tmp_b);
}
// p = [scalar]B, where B is the base point
static void ge_scalarmult_base(ge *p, const u8 scalar[32])
{
// twin 4-bits signed combs, from Mike Hamburg's
// Fast and compact elliptic-curve cryptography (2012)
// 1 / 2 modulo L
static const u8 half_mod_L[32] = {
247,233,122,46,141,49,9,44,107,206,123,81,239,124,111,10,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8, };
// (2^256 - 1) / 2 modulo L
static const u8 half_ones[32] = {
142,74,204,70,186,24,118,107,184,231,190,57,250,173,119,99,
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,7, };
// All bits set form: 1 means 1, 0 means -1
u8 s_scalar[32];
mul_add(s_scalar, scalar, half_mod_L, half_ones);
// Double and add ladder
fe tmp_a, tmp_b; // temporaries for addition
ge_precomp tmp_c; // temporary for comb lookup
ge tmp_d; // temporary for doubling
fe_1(tmp_c.Yp);
fe_1(tmp_c.Ym);
fe_0(tmp_c.T2);
// Save a double on the first iteration
ge_zero(p);
lookup_add(p, &tmp_c, tmp_a, tmp_b, b_comb_low , s_scalar, 31);
lookup_add(p, &tmp_c, tmp_a, tmp_b, b_comb_high, s_scalar, 31+128);
// Regular double & add for the rest
for (int i = 30; i >= 0; i--) {
ge_double(p, p, &tmp_d);
lookup_add(p, &tmp_c, tmp_a, tmp_b, b_comb_low , s_scalar, i);
lookup_add(p, &tmp_c, tmp_a, tmp_b, b_comb_high, s_scalar, i+128);
}
// Note: we could save one addition at the end if we assumed the
// scalar fit in 252 bit. Which it does in practice if it is
// selected at random. However, non-random, non-hashed scalars
// *can* overflow 252 bits in practice. Better account for that
// than leaving that kind of subtle corner case.
WIPE_BUFFER(tmp_a); WIPE_CTX(&tmp_d);
WIPE_BUFFER(tmp_b); WIPE_CTX(&tmp_c);
WIPE_BUFFER(s_scalar);
}
void crypto_sign_public_key_custom_hash(u8 public_key[32],
const u8 secret_key[32],
const crypto_sign_vtable *hash)
{
u8 a[64];
hash->hash(a, secret_key, 32);
trim_scalar(a);
ge A;
ge_scalarmult_base(&A, a);
ge_tobytes(public_key, &A);
WIPE_BUFFER(a);
WIPE_CTX(&A);
}
void crypto_sign_public_key(u8 public_key[32], const u8 secret_key[32])
{
crypto_sign_public_key_custom_hash(public_key, secret_key,
&crypto_blake2b_vtable);
}
void crypto_sign_init_first_pass_custom_hash(crypto_sign_ctx_abstract *ctx,
const u8 secret_key[32],
const u8 public_key[32],
const crypto_sign_vtable *hash)
{
ctx->hash = hash; // set vtable
u8 *a = ctx->buf;
u8 *prefix = ctx->buf + 32;
ctx->hash->hash(a, secret_key, 32);
trim_scalar(a);
if (public_key == 0) {
crypto_sign_public_key_custom_hash(ctx->pk, secret_key, ctx->hash);
} else {
COPY(ctx->pk, public_key, 32);
}
// Deterministic part of EdDSA: Construct a nonce by hashing the message
// instead of generating a random number.
// An actual random number would work just fine, and would save us
// the trouble of hashing the message twice. If we did that
// however, the user could fuck it up and reuse the nonce.
ctx->hash->init (ctx);
ctx->hash->update(ctx, prefix , 32);
}
void crypto_sign_init_first_pass(crypto_sign_ctx_abstract *ctx,
const u8 secret_key[32],
const u8 public_key[32])
{
crypto_sign_init_first_pass_custom_hash(ctx, secret_key, public_key,
&crypto_blake2b_vtable);
}
void crypto_sign_update(crypto_sign_ctx_abstract *ctx,
const u8 *msg, size_t msg_size)
{
ctx->hash->update(ctx, msg, msg_size);
}
void crypto_sign_init_second_pass(crypto_sign_ctx_abstract *ctx)
{
u8 *r = ctx->buf + 32;
u8 *half_sig = ctx->buf + 64;
ctx->hash->final(ctx, r);
reduce(r);
// first half of the signature = "random" nonce times the base point
ge R;
ge_scalarmult_base(&R, r);
ge_tobytes(half_sig, &R);
WIPE_CTX(&R);
// Hash R, the public key, and the message together.
// It cannot be done in parallel with the first hash.
ctx->hash->init (ctx);
ctx->hash->update(ctx, half_sig, 32);
ctx->hash->update(ctx, ctx->pk , 32);
}
void crypto_sign_final(crypto_sign_ctx_abstract *ctx, u8 signature[64])
{
u8 *a = ctx->buf;
u8 *r = ctx->buf + 32;
u8 *half_sig = ctx->buf + 64;
u8 h_ram[64];
ctx->hash->final(ctx, h_ram);
reduce(h_ram);
COPY(signature, half_sig, 32);
mul_add(signature + 32, h_ram, a, r); // s = h_ram * a + r
WIPE_BUFFER(h_ram);
crypto_wipe(ctx, ctx->hash->ctx_size);
}
void crypto_sign(u8 signature[64],
const u8 secret_key[32],
const u8 public_key[32],
const u8 *message, size_t message_size)
{
crypto_sign_ctx ctx;
crypto_sign_ctx_abstract *actx = (crypto_sign_ctx_abstract*)&ctx;
crypto_sign_init_first_pass (actx, secret_key, public_key);
crypto_sign_update (actx, message, message_size);
crypto_sign_init_second_pass(actx);
crypto_sign_update (actx, message, message_size);
crypto_sign_final (actx, signature);
}
void crypto_check_init_custom_hash(crypto_check_ctx_abstract *ctx,
const u8 signature[64],
const u8 public_key[32],
const crypto_sign_vtable *hash)
{
ctx->hash = hash; // set vtable
COPY(ctx->buf, signature , 64);
COPY(ctx->pk , public_key, 32);
ctx->hash->init (ctx);
ctx->hash->update(ctx, signature , 32);
ctx->hash->update(ctx, public_key, 32);
}
void crypto_check_init(crypto_check_ctx_abstract *ctx, const u8 signature[64],
const u8 public_key[32])
{
crypto_check_init_custom_hash(ctx, signature, public_key,
&crypto_blake2b_vtable);
}
void crypto_check_update(crypto_check_ctx_abstract *ctx,
const u8 *msg, size_t msg_size)
{
ctx->hash->update(ctx, msg, msg_size);
}
int crypto_check_final(crypto_check_ctx_abstract *ctx)
{
u8 h_ram[64];
ctx->hash->final(ctx, h_ram);
reduce(h_ram);
u8 *R = ctx->buf; // R
u8 *s = ctx->buf + 32; // s
u8 *R_check = ctx->pk; // overwrite ctx->pk to save stack space
if (ge_r_check(R_check, s, h_ram, ctx->pk)) {
return -1;
}
return crypto_verify32(R, R_check); // R == R_check ? OK : fail
}
int crypto_check(const u8 signature[64], const u8 public_key[32],
const u8 *message, size_t message_size)
{
crypto_check_ctx ctx;
crypto_check_ctx_abstract *actx = (crypto_check_ctx_abstract*)&ctx;
crypto_check_init (actx, signature, public_key);
crypto_check_update(actx, message, message_size);
return crypto_check_final(actx);
}
///////////////////////
/// EdDSA to X25519 ///
///////////////////////
void crypto_from_eddsa_private(u8 x25519[32], const u8 eddsa[32])
{
u8 a[64];
crypto_blake2b(a, eddsa, 32);
COPY(x25519, a, 32);
WIPE_BUFFER(a);
}
void crypto_from_eddsa_public(u8 x25519[32], const u8 eddsa[32])
{
fe t1, t2;
fe_frombytes(t2, eddsa);
fe_add(t1, fe_one, t2);
fe_sub(t2, fe_one, t2);
fe_invert(t2, t2);
fe_mul(t1, t1, t2);
fe_tobytes(x25519, t1);
WIPE_BUFFER(t1);
WIPE_BUFFER(t2);
}
/////////////////////////////////////////////
/// Dirty ephemeral public key generation ///
/////////////////////////////////////////////
// Those functions generates a public key, *without* clearing the
// cofactor. Sending that key over the network leaks 3 bits of the
// private key. Use only to generate ephemeral keys that will be hidden
// with crypto_curve_to_hidden().
//
// The public key is otherwise compatible with crypto_x25519() and
// crypto_key_exchange() (those properly clear the cofactor).
//
// Note that the distribution of the resulting public keys is almost
// uniform. Flipping the sign of the v coordinate (not provided by this
// function), covers the entire key space almost perfectly, where
// "almost" means a 2^-128 bias (undetectable). This uniformity is
// needed to ensure the proper randomness of the resulting
// representatives (once we apply crypto_curve_to_hidden()).
//
// Recall that Curve25519 has order C = 2^255 + e, with e < 2^128 (not
// to be confused with the prime order of the main subgroup, L, which is
// 8 times less than that).
//
// Generating all points would require us to multiply a point of order C
// (the base point plus any point of order 8) by all scalars from 0 to
// C-1. Clamping limits us to scalars between 2^254 and 2^255 - 1. But
// by negating the resulting point at random, we also cover scalars from
// -2^255 + 1 to -2^254 (which modulo C is congruent to e+1 to 2^254 + e).
//
// In practice:
// - Scalars from 0 to e + 1 are never generated
// - Scalars from 2^255 to 2^255 + e are never generated
// - Scalars from 2^254 + 1 to 2^254 + e are generated twice
//
// Since e < 2^128, detecting this bias requires observing over 2^100
// representatives from a given source (this will never happen), *and*
// recovering enough of the private key to determine that they do, or do
// not, belong to the biased set (this practically requires solving
// discrete logarithm, which is conjecturally intractable).
//
// In practice, this means the bias is impossible to detect.
// s + (x*L) % 8*L
// Guaranteed to fit in 256 bits iff s fits in 255 bits.
// L < 2^253
// x%8 < 2^3
// L * (x%8) < 2^255
// s < 2^255
// s + L * (x%8) < 2^256
static void add_xl(u8 s[32], u8 x)
{
u64 mod8 = x & 7;
u64 carry = 0;
FOR (i , 0, 8) {
carry = carry + load32_le(s + 4*i) + L[i] * mod8;
store32_le(s + 4*i, (u32)carry);
carry >>= 32;
}
}
// "Small" dirty ephemeral key.
// Use if you need to shrink the size of the binary, and can afford to
// slow down by a factor of two (compared to the fast version)
//
// This version works by decoupling the cofactor from the main factor.
//
// - The trimmed scalar determines the main factor
// - The clamped bits of the scalar determine the cofactor.
//
// Cofactor and main factor are combined into a single scalar, which is
// then multiplied by a point of order 8*L (unlike the base point, which
// has prime order). That "dirty" base point is the addition of the
// regular base point (9), and a point of order 8.
void crypto_x25519_dirty_small(u8 public_key[32], const u8 secret_key[32])
{
// Base point of order 8*L
// Raw scalar multiplication with it does not clear the cofactor,
// and the resulting public key will reveal 3 bits of the scalar.
static const u8 dirty_base_point[32] = {
0x34, 0xfc, 0x6c, 0xb7, 0xc8, 0xde, 0x58, 0x97, 0x77, 0x70, 0xd9, 0x52,
0x16, 0xcc, 0xdc, 0x6c, 0x85, 0x90, 0xbe, 0xcd, 0x91, 0x9c, 0x07, 0x59,
0x94, 0x14, 0x56, 0x3b, 0x4b, 0xa4, 0x47, 0x0f, };
// separate the main factor & the cofactor of the scalar
u8 scalar[32];
COPY(scalar, secret_key, 32);
trim_scalar(scalar);
// Separate the main factor and the cofactor
//
// The scalar is trimmed, so its cofactor is cleared. The three
// least significant bits however still have a main factor. We must
// remove it for X25519 compatibility.
//
// We exploit the fact that 5*L = 1 (modulo 8)
// cofactor = lsb * 5 * L (modulo 8*L)
// combined = scalar + cofactor (modulo 8*L)
// combined = scalar + (lsb * 5 * L) (modulo 8*L)
add_xl(scalar, secret_key[0] * 5);
scalarmult(public_key, scalar, dirty_base_point, 256);
WIPE_BUFFER(scalar);
}
// "Fast" dirty ephemeral key
// We use this one by default.
//
// This version works by performing a regular scalar multiplication,
// then add a low order point. The scalar multiplication is done in
// Edwards space for more speed (*2 compared to the "small" version).
// The cost is a bigger binary for programs that don't also sign messages.
void crypto_x25519_dirty_fast(u8 public_key[32], const u8 secret_key[32])
{
u8 scalar[32];
ge pk;
COPY(scalar, secret_key, 32);
trim_scalar(scalar);
ge_scalarmult_base(&pk, scalar);
// Select low order point
// We're computing the [cofactor]lop scalar multiplication, where:
// cofactor = tweak & 7.
// lop = (lop_x, lop_y)
// lop_x = sqrt((sqrt(d + 1) + 1) / d)
// lop_y = -lop_x * sqrtm1
// Notes:
// - A (single) Montgomery ladder would be twice as slow.
// - An actual scalar multiplication would hurt performance.
// - A full table lookup would take more code.
u8 cofactor = secret_key[0] & 7;
int a = (cofactor >> 2) & 1;
int b = (cofactor >> 1) & 1;
int c = (cofactor >> 0) & 1;
fe t1, t2, t3;
fe_0(t1);
fe_ccopy(t1, sqrtm1, b);
fe_ccopy(t1, lop_x , c);
fe_neg (t3, t1);
fe_ccopy(t1, t3, a);
fe_1(t2);
fe_0(t3);
fe_ccopy(t2, t3 , b);
fe_ccopy(t2, lop_y, c);
fe_neg (t3, t2);
fe_ccopy(t2, t3, a^b);
ge_precomp low_order_point;
fe_add(low_order_point.Yp, t2, t1);
fe_sub(low_order_point.Ym, t2, t1);
fe_mul(low_order_point.T2, t2, t1);
fe_mul(low_order_point.T2, low_order_point.T2, D2);
// Add low order point to the public key
ge_madd(&pk, &pk, &low_order_point, t1, t2);
// Convert to Montgomery u coordinate (we ignore the sign)
fe_add(t1, pk.Z, pk.Y);
fe_sub(t2, pk.Z, pk.Y);
fe_invert(t2, t2);
fe_mul(t1, t1, t2);
fe_tobytes(public_key, t1);
WIPE_BUFFER(t1); WIPE_BUFFER(scalar);
WIPE_BUFFER(t2); WIPE_CTX(&pk);
WIPE_BUFFER(t3); WIPE_CTX(&low_order_point);
}
///////////////////
/// Elligator 2 ///
///////////////////
static const fe A = {486662};
// Elligator direct map
//
// Computes the point corresponding to a representative, encoded in 32
// bytes (little Endian). Since positive representatives fits in 254
// bits, The two most significant bits are ignored.
//
// From the paper:
// w = -A / (fe(1) + non_square * r^2)
// e = chi(w^3 + A*w^2 + w)
// u = e*w - (fe(1)-e)*(A//2)
// v = -e * sqrt(u^3 + A*u^2 + u)
//
// We ignore v because we don't need it for X25519 (the Montgomery
// ladder only uses u).
//
// Note that e is either 0, 1 or -1
// if e = 0 u = 0 and v = 0
// if e = 1 u = w
// if e = -1 u = -w - A = w * non_square * r^2
//
// Let r1 = non_square * r^2
// Let r2 = 1 + r1
// Note that r2 cannot be zero, -1/non_square is not a square.
// We can (tediously) verify that:
// w^3 + A*w^2 + w = (A^2*r1 - r2^2) * A / r2^3
// Therefore:
// chi(w^3 + A*w^2 + w) = chi((A^2*r1 - r2^2) * (A / r2^3))
// chi(w^3 + A*w^2 + w) = chi((A^2*r1 - r2^2) * (A / r2^3)) * 1
// chi(w^3 + A*w^2 + w) = chi((A^2*r1 - r2^2) * (A / r2^3)) * chi(r2^6)
// chi(w^3 + A*w^2 + w) = chi((A^2*r1 - r2^2) * (A / r2^3) * r2^6)
// chi(w^3 + A*w^2 + w) = chi((A^2*r1 - r2^2) * A * r2^3)
// Corollary:
// e = 1 if (A^2*r1 - r2^2) * A * r2^3) is a non-zero square
// e = -1 if (A^2*r1 - r2^2) * A * r2^3) is not a square
// Note that w^3 + A*w^2 + w (and therefore e) can never be zero:
// w^3 + A*w^2 + w = w * (w^2 + A*w + 1)
// w^3 + A*w^2 + w = w * (w^2 + A*w + A^2/4 - A^2/4 + 1)
// w^3 + A*w^2 + w = w * (w + A/2)^2 - A^2/4 + 1)
// which is zero only if:
// w = 0 (impossible)
// (w + A/2)^2 = A^2/4 - 1 (impossible, because A^2/4-1 is not a square)
//
// Let isr = invsqrt((A^2*r1 - r2^2) * A * r2^3)
// isr = sqrt(1 / ((A^2*r1 - r2^2) * A * r2^3)) if e = 1
// isr = sqrt(sqrt(-1) / ((A^2*r1 - r2^2) * A * r2^3)) if e = -1
//
// if e = 1
// let u1 = -A * (A^2*r1 - r2^2) * A * r2^2 * isr^2
// u1 = w
// u1 = u
//
// if e = -1
// let ufactor = -non_square * sqrt(-1) * r^2
// let vfactor = sqrt(ufactor)
// let u2 = -A * (A^2*r1 - r2^2) * A * r2^2 * isr^2 * ufactor
// u2 = w * -1 * -non_square * r^2
// u2 = w * non_square * r^2
// u2 = u
void crypto_hidden_to_curve(uint8_t curve[32], const uint8_t hidden[32])
{
// Representatives are encoded in 254 bits.
// The two most significant ones are random padding that must be ignored.
u8 clamped[32];
COPY(clamped, hidden, 32);
clamped[31] &= 0x3f;
fe r, u, t1, t2, t3;
fe_frombytes(r, clamped);
fe_sq2(t1, r);
fe_add(u, t1, fe_one);
fe_sq (t2, u);
fe_mul(t3, A2, t1);
fe_sub(t3, t3, t2);
fe_mul(t3, t3, A);
fe_mul(t1, t2, u);
fe_mul(t1, t3, t1);
int is_square = invsqrt(t1, t1);
fe_sq(u, r);
fe_mul(u, u, ufactor);
fe_ccopy(u, fe_one, is_square);
fe_sq (t1, t1);
fe_mul(u, u, A);
fe_mul(u, u, t3);
fe_mul(u, u, t2);
fe_mul(u, u, t1);
fe_neg(u, u);
fe_tobytes(curve, u);
WIPE_BUFFER(t1); WIPE_BUFFER(r);
WIPE_BUFFER(t2); WIPE_BUFFER(u);
WIPE_BUFFER(t3); WIPE_BUFFER(clamped);
}
// Elligator inverse map
//
// Computes the representative of a point, if possible. If not, it does
// nothing and returns -1. Note that the success of the operation
// depends only on the point (more precisely its u coordinate). The
// tweak parameter is used only upon success
//
// The tweak should be a random byte. Beyond that, its contents are an
// implementation detail. Currently, the tweak comprises:
// - Bit 1 : sign of the v coordinate (0 if positive, 1 if negative)
// - Bit 2-5: not used
// - Bits 6-7: random padding
//
// From the paper:
// Let sq = -non_square * u * (u+A)
// if sq is not a square, or u = -A, there is no mapping
// Assuming there is a mapping:
// if v is positive: r = sqrt(-(u+A) / u)
// if v is negative: r = sqrt(-u / (u+A))
//
// We compute isr = invsqrt(-non_square * u * (u+A))
// if it wasn't a non-zero square, abort.
// else, isr = sqrt(-1 / (non_square * u * (u+A))
//
// This causes us to abort if u is zero, even though we shouldn't. This
// never happens in practice, because (i) a random point in the curve has
// a negligible chance of being zero, and (ii) scalar multiplication with
// a trimmed scalar *never* yields zero.
//
// Since:
// isr * (u+A) = sqrt(-1 / (non_square * u * (u+A)) * (u+A)
// isr * (u+A) = sqrt(-(u+A) / (non_square * u * (u+A))
// and:
// isr = u = sqrt(-1 / (non_square * u * (u+A)) * u
// isr = u = sqrt(-u / (non_square * u * (u+A))
// Therefore:
// if v is positive: r = isr * (u+A)
// if v is negative: r = isr * u
int crypto_curve_to_hidden(u8 hidden[32], const u8 public_key[32], u8 tweak)
{
fe t1, t2, t3;
fe_frombytes(t1, public_key);
fe_add(t2, t1, A);
fe_mul(t3, t1, t2);
fe_mul_small(t3, t3, -2);
int is_square = invsqrt(t3, t3);
if (!is_square) {
// The only variable time bit. This ultimately reveals how many
// tries it took us to find a representable key.
// This does not affect security as long as we try keys at random.
WIPE_BUFFER(t1);
WIPE_BUFFER(t2);
WIPE_BUFFER(t3);
return -1;
}
fe_ccopy (t1, t2, tweak & 1);
fe_mul (t3, t1, t3);
fe_mul_small(t1, t3, 2);
fe_neg (t2, t3);
fe_ccopy (t3, t2, fe_isodd(t1));
fe_tobytes(hidden, t3);
// Pad with two random bits
hidden[31] |= tweak & 0xc0;
WIPE_BUFFER(t1);
WIPE_BUFFER(t2);
WIPE_BUFFER(t3);
return 0;
}
///////////////////////
/// Scalar division ///
///////////////////////
// Montgomery reduction.
// Divides x by (2^256), and reduces the result modulo L
//
// Precondition:
// x < L * 2^256
// Constants:
// r = 2^256 (makes division by r trivial)
// k = (r * (1/r) - 1) // L (1/r is computed modulo L )
// Algorithm:
// s = (x * k) % r
// t = x + s*L (t is always a multiple of r)
// u = (t/r) % L (u is always below 2*L, conditional subtraction is enough)
static void redc(u32 u[8], u32 x[16])
{
static const u32 k[8] = { 0x12547e1b, 0xd2b51da3, 0xfdba84ff, 0xb1a206f2,
0xffa36bea, 0x14e75438, 0x6fe91836, 0x9db6c6f2,};
static const u32 l[8] = { 0x5cf5d3ed, 0x5812631a, 0xa2f79cd6, 0x14def9de,
0x00000000, 0x00000000, 0x00000000, 0x10000000,};
// s = x * k (modulo 2^256)
// This is cheaper than the full multiplication.
u32 s[8] = {0};
FOR (i, 0, 8) {
u64 carry = 0;
FOR (j, 0, 8-i) {
carry += s[i+j] + (u64)x[i] * k[j];
s[i+j] = (u32)carry;
carry >>= 32;
}
}
u32 t[16] = {0};
multiply(t, s, l);
// t = t + x
u64 carry = 0;
FOR (i, 0, 16) {
carry += (u64)t[i] + x[i];
t[i] = (u32)carry;
carry >>= 32;
}
// u = (t / 2^256) % L
// Note that t / 2^256 is always below 2*L,
// So a constant time conditional subtraction is enough
// We work with L directly, in a 2's complement encoding
// (-L == ~L + 1)
remove_l(u, t+8);
WIPE_BUFFER(s);
WIPE_BUFFER(t);
}
void crypto_x25519_inverse(u8 blind_salt [32], const u8 private_key[32],
const u8 curve_point[32])
{
static const u8 Lm2[32] = { // L - 2
0xeb, 0xd3, 0xf5, 0x5c, 0x1a, 0x63, 0x12, 0x58, 0xd6, 0x9c, 0xf7, 0xa2,
0xde, 0xf9, 0xde, 0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, };
// 1 in Montgomery form
u32 m_inv [8] = {0x8d98951d, 0xd6ec3174, 0x737dcf70, 0xc6ef5bf4,
0xfffffffe, 0xffffffff, 0xffffffff, 0x0fffffff,};
u8 scalar[32];
COPY(scalar, private_key, 32);
trim_scalar(scalar);
// Convert the scalar in Montgomery form
// m_scl = scalar * 2^256 (modulo L)
u32 m_scl[8];
{
u32 tmp[16];
ZERO(tmp, 8);
load32_le_buf(tmp+8, scalar, 8);
mod_l(scalar, tmp);
load32_le_buf(m_scl, scalar, 8);
WIPE_BUFFER(tmp); // Wipe ASAP to save stack space
}
u32 product[16];
for (int i = 252; i >= 0; i--) {
ZERO(product, 16);
multiply(product, m_inv, m_inv);
redc(m_inv, product);
if (scalar_bit(Lm2, i)) {
ZERO(product, 16);
multiply(product, m_inv, m_scl);
redc(m_inv, product);
}
}
// Convert the inverse *out* of Montgomery form
// scalar = m_inv / 2^256 (modulo L)
COPY(product, m_inv, 8);
ZERO(product + 8, 8);
redc(m_inv, product);
store32_le_buf(scalar, m_inv, 8); // the *inverse* of the scalar
// Clear the cofactor of scalar:
// cleared = scalar * (3*L + 1) (modulo 8*L)
// cleared = scalar + scalar * 3 * L (modulo 8*L)
// Note that (scalar * 3) is reduced modulo 8, so we only need the
// first byte.
add_xl(scalar, scalar[0] * 3);
// Recall that 8*L < 2^256. However it is also very close to
// 2^255. If we spanned the ladder over 255 bits, random tests
// wouldn't catch the off-by-one error.
scalarmult(blind_salt, scalar, curve_point, 256);
WIPE_BUFFER(scalar); WIPE_BUFFER(m_scl);
WIPE_BUFFER(product); WIPE_BUFFER(m_inv);
}
////////////////////////////////
/// Authenticated encryption ///
////////////////////////////////
static void lock_auth(u8 mac[16], const u8 auth_key[32],
const u8 *ad , size_t ad_size,
const u8 *cipher_text, size_t text_size)
{
u8 sizes[16]; // Not secret, not wiped
store64_le(sizes + 0, ad_size);
store64_le(sizes + 8, text_size);
crypto_poly1305_ctx poly_ctx; // auto wiped...
crypto_poly1305_init (&poly_ctx, auth_key);
crypto_poly1305_update(&poly_ctx, ad , ad_size);
crypto_poly1305_update(&poly_ctx, zero , align(ad_size, 16));
crypto_poly1305_update(&poly_ctx, cipher_text, text_size);
crypto_poly1305_update(&poly_ctx, zero , align(text_size, 16));
crypto_poly1305_update(&poly_ctx, sizes , 16);
crypto_poly1305_final (&poly_ctx, mac); // ...here
}