Skip to content
Snippets Groups Projects
minimonocypher.c 99.8 KiB
Newer Older
Charles Wright's avatar
Charles Wright committed
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
// t4 -= c * 2^26           -- |t4| <= 2^25
// t5 += c                  -- |t5| <= 2^63
//
// c   = t1 + 2^24 / 2^25   -- |c|  <= 2^38
// t1 -= c * 2^25           -- |t1| <= 2^24
// t2 += c                  -- |t2| <= 2^63
//
// c   = t5 + 2^24 / 2^25   -- |c|  <= 2^38
// t5 -= c * 2^25           -- |t5| <= 2^24
// t6 += c                  -- |t6| <= 2^63
//
// c   = t2 + 2^25 / 2^26   -- |c|  <= 2^37
// t2 -= c * 2^26           -- |t2| <= 2^25        < 1.1 * 2^25  (final t2)
// t3 += c                  -- |t3| <= 2^63
//
// c   = t6 + 2^25 / 2^26   -- |c|  <= 2^37
// t6 -= c * 2^26           -- |t6| <= 2^25        < 1.1 * 2^25  (final t6)
// t7 += c                  -- |t7| <= 2^63
//
// c   = t3 + 2^24 / 2^25   -- |c|  <= 2^38
// t3 -= c * 2^25           -- |t3| <= 2^24        < 1.1 * 2^24  (final t3)
// t4 += c                  -- |t4| <= 2^25 + 2^38 < 2^39
//
// c   = t7 + 2^24 / 2^25   -- |c|  <= 2^38
// t7 -= c * 2^25           -- |t7| <= 2^24        < 1.1 * 2^24  (final t7)
// t8 += c                  -- |t8| <= 2^63
//
// c   = t4 + 2^25 / 2^26   -- |c|  <= 2^13
// t4 -= c * 2^26           -- |t4| <= 2^25        < 1.1 * 2^25  (final t4)
// t5 += c                  -- |t5| <= 2^24 + 2^13 < 1.1 * 2^24  (final t5)
//
// c   = t8 + 2^25 / 2^26   -- |c|  <= 2^37
// t8 -= c * 2^26           -- |t8| <= 2^25        < 1.1 * 2^25  (final t8)
// t9 += c                  -- |t9| <= 2^63
//
// c   = t9 + 2^24 / 2^25   -- |c|  <= 2^38
// t9 -= c * 2^25           -- |t9| <= 2^24        < 1.1 * 2^24  (final t9)
// t0 += c * 19             -- |t0| <= 2^25 + 2^38*19 < 2^44
//
// c   = t0 + 2^25 / 2^26   -- |c|  <= 2^18
// t0 -= c * 2^26           -- |t0| <= 2^25        < 1.1 * 2^25  (final t0)
// t1 += c                  -- |t1| <= 2^24 + 2^18 < 1.1 * 2^24  (final t1)
//
// Postcondition
// -------------
//   |t0|, |t2|, |t4|, |t6|, |t8|  <  1.1 * 2^25
//   |t1|, |t3|, |t5|, |t7|, |t9|  <  1.1 * 2^24
#define FE_CARRY                                                        \
    i64 c;                                                              \
    c = (t0 + ((i64)1<<25)) >> 26;  t0 -= c * ((i64)1 << 26);  t1 += c; \
    c = (t4 + ((i64)1<<25)) >> 26;  t4 -= c * ((i64)1 << 26);  t5 += c; \
    c = (t1 + ((i64)1<<24)) >> 25;  t1 -= c * ((i64)1 << 25);  t2 += c; \
    c = (t5 + ((i64)1<<24)) >> 25;  t5 -= c * ((i64)1 << 25);  t6 += c; \
    c = (t2 + ((i64)1<<25)) >> 26;  t2 -= c * ((i64)1 << 26);  t3 += c; \
    c = (t6 + ((i64)1<<25)) >> 26;  t6 -= c * ((i64)1 << 26);  t7 += c; \
    c = (t3 + ((i64)1<<24)) >> 25;  t3 -= c * ((i64)1 << 25);  t4 += c; \
    c = (t7 + ((i64)1<<24)) >> 25;  t7 -= c * ((i64)1 << 25);  t8 += c; \
    c = (t4 + ((i64)1<<25)) >> 26;  t4 -= c * ((i64)1 << 26);  t5 += c; \
    c = (t8 + ((i64)1<<25)) >> 26;  t8 -= c * ((i64)1 << 26);  t9 += c; \
    c = (t9 + ((i64)1<<24)) >> 25;  t9 -= c * ((i64)1 << 25);  t0 += c * 19; \
    c = (t0 + ((i64)1<<25)) >> 26;  t0 -= c * ((i64)1 << 26);  t1 += c; \
    h[0]=(i32)t0;  h[1]=(i32)t1;  h[2]=(i32)t2;  h[3]=(i32)t3;  h[4]=(i32)t4; \
    h[5]=(i32)t5;  h[6]=(i32)t6;  h[7]=(i32)t7;  h[8]=(i32)t8;  h[9]=(i32)t9

static void fe_frombytes(fe h, const u8 s[32])
{
    i64 t0 =  load32_le(s);                        // t0 < 2^32
    i64 t1 =  load24_le(s +  4) << 6;              // t1 < 2^30
    i64 t2 =  load24_le(s +  7) << 5;              // t2 < 2^29
    i64 t3 =  load24_le(s + 10) << 3;              // t3 < 2^27
    i64 t4 =  load24_le(s + 13) << 2;              // t4 < 2^26
    i64 t5 =  load32_le(s + 16);                   // t5 < 2^32
    i64 t6 =  load24_le(s + 20) << 7;              // t6 < 2^31
    i64 t7 =  load24_le(s + 23) << 5;              // t7 < 2^29
    i64 t8 =  load24_le(s + 26) << 4;              // t8 < 2^28
    i64 t9 = (load24_le(s + 29) & 0x7fffff) << 2;  // t9 < 2^25
    FE_CARRY;                                      // Carry recondition OK
}

// Precondition
//   |h[0]|, |h[2]|, |h[4]|, |h[6]|, |h[8]|  <  1.1 * 2^25
//   |h[1]|, |h[3]|, |h[5]|, |h[7]|, |h[9]|  <  1.1 * 2^24
//
// Therefore, |h| < 2^255-19
// There are two possibilities:
//
// - If h is positive, all we need to do is reduce its individual
//   limbs down to their tight positive range.
// - If h is negative, we also need to add 2^255-19 to it.
//   Or just remove 19 and chop off any excess bit.
static void fe_tobytes(u8 s[32], const fe h)
{
    i32 t[10];
    COPY(t, h, 10);
    i32 q = (19 * t[9] + (((i32) 1) << 24)) >> 25;
    //                 |t9|                    < 1.1 * 2^24
    //  -1.1 * 2^24  <  t9                     < 1.1 * 2^24
    //  -21  * 2^24  <  19 * t9                < 21  * 2^24
    //  -2^29        <  19 * t9 + 2^24         < 2^29
    //  -2^29 / 2^25 < (19 * t9 + 2^24) / 2^25 < 2^29 / 2^25
    //  -16          < (19 * t9 + 2^24) / 2^25 < 16
    FOR (i, 0, 5) {
        q += t[2*i  ]; q >>= 26; // q = 0 or -1
        q += t[2*i+1]; q >>= 25; // q = 0 or -1
    }
    // q =  0 iff h >= 0
    // q = -1 iff h <  0
    // Adding q * 19 to h reduces h to its proper range.
    q *= 19;  // Shift carry back to the beginning
    FOR (i, 0, 5) {
        t[i*2  ] += q;  q = t[i*2  ] >> 26;  t[i*2  ] -= q * ((i32)1 << 26);
        t[i*2+1] += q;  q = t[i*2+1] >> 25;  t[i*2+1] -= q * ((i32)1 << 25);
    }
    // h is now fully reduced, and q represents the excess bit.

    store32_le(s +  0, ((u32)t[0] >>  0) | ((u32)t[1] << 26));
    store32_le(s +  4, ((u32)t[1] >>  6) | ((u32)t[2] << 19));
    store32_le(s +  8, ((u32)t[2] >> 13) | ((u32)t[3] << 13));
    store32_le(s + 12, ((u32)t[3] >> 19) | ((u32)t[4] <<  6));
    store32_le(s + 16, ((u32)t[5] >>  0) | ((u32)t[6] << 25));
    store32_le(s + 20, ((u32)t[6] >>  7) | ((u32)t[7] << 19));
    store32_le(s + 24, ((u32)t[7] >> 13) | ((u32)t[8] << 12));
    store32_le(s + 28, ((u32)t[8] >> 20) | ((u32)t[9] <<  6));

    WIPE_BUFFER(t);
}

// Precondition
// -------------
//   |f0|, |f2|, |f4|, |f6|, |f8|  <  1.65 * 2^26
//   |f1|, |f3|, |f5|, |f7|, |f9|  <  1.65 * 2^25
//
//   |g0|, |g2|, |g4|, |g6|, |g8|  <  1.65 * 2^26
//   |g1|, |g3|, |g5|, |g7|, |g9|  <  1.65 * 2^25
static void fe_mul_small(fe h, const fe f, i32 g)
{
    i64 t0 = f[0] * (i64) g;  i64 t1 = f[1] * (i64) g;
    i64 t2 = f[2] * (i64) g;  i64 t3 = f[3] * (i64) g;
    i64 t4 = f[4] * (i64) g;  i64 t5 = f[5] * (i64) g;
    i64 t6 = f[6] * (i64) g;  i64 t7 = f[7] * (i64) g;
    i64 t8 = f[8] * (i64) g;  i64 t9 = f[9] * (i64) g;
    // |t0|, |t2|, |t4|, |t6|, |t8|  <  1.65 * 2^26 * 2^31  < 2^58
    // |t1|, |t3|, |t5|, |t7|, |t9|  <  1.65 * 2^25 * 2^31  < 2^57

    FE_CARRY; // Carry precondition OK
}

// Precondition
// -------------
//   |f0|, |f2|, |f4|, |f6|, |f8|  <  1.65 * 2^26
//   |f1|, |f3|, |f5|, |f7|, |f9|  <  1.65 * 2^25
//
//   |g0|, |g2|, |g4|, |g6|, |g8|  <  1.65 * 2^26
//   |g1|, |g3|, |g5|, |g7|, |g9|  <  1.65 * 2^25
static void fe_mul(fe h, const fe f, const fe g)
{
    // Everything is unrolled and put in temporary variables.
    // We could roll the loop, but that would make curve25519 twice as slow.
    i32 f0 = f[0]; i32 f1 = f[1]; i32 f2 = f[2]; i32 f3 = f[3]; i32 f4 = f[4];
    i32 f5 = f[5]; i32 f6 = f[6]; i32 f7 = f[7]; i32 f8 = f[8]; i32 f9 = f[9];
    i32 g0 = g[0]; i32 g1 = g[1]; i32 g2 = g[2]; i32 g3 = g[3]; i32 g4 = g[4];
    i32 g5 = g[5]; i32 g6 = g[6]; i32 g7 = g[7]; i32 g8 = g[8]; i32 g9 = g[9];
    i32 F1 = f1*2; i32 F3 = f3*2; i32 F5 = f5*2; i32 F7 = f7*2; i32 F9 = f9*2;
    i32 G1 = g1*19;  i32 G2 = g2*19;  i32 G3 = g3*19;
    i32 G4 = g4*19;  i32 G5 = g5*19;  i32 G6 = g6*19;
    i32 G7 = g7*19;  i32 G8 = g8*19;  i32 G9 = g9*19;
    // |F1|, |F3|, |F5|, |F7|, |F9|  <  1.65 * 2^26
    // |G0|, |G2|, |G4|, |G6|, |G8|  <  2^31
    // |G1|, |G3|, |G5|, |G7|, |G9|  <  2^30

    i64 t0 = f0*(i64)g0 + F1*(i64)G9 + f2*(i64)G8 + F3*(i64)G7 + f4*(i64)G6
        +    F5*(i64)G5 + f6*(i64)G4 + F7*(i64)G3 + f8*(i64)G2 + F9*(i64)G1;
    i64 t1 = f0*(i64)g1 + f1*(i64)g0 + f2*(i64)G9 + f3*(i64)G8 + f4*(i64)G7
        +    f5*(i64)G6 + f6*(i64)G5 + f7*(i64)G4 + f8*(i64)G3 + f9*(i64)G2;
    i64 t2 = f0*(i64)g2 + F1*(i64)g1 + f2*(i64)g0 + F3*(i64)G9 + f4*(i64)G8
        +    F5*(i64)G7 + f6*(i64)G6 + F7*(i64)G5 + f8*(i64)G4 + F9*(i64)G3;
    i64 t3 = f0*(i64)g3 + f1*(i64)g2 + f2*(i64)g1 + f3*(i64)g0 + f4*(i64)G9
        +    f5*(i64)G8 + f6*(i64)G7 + f7*(i64)G6 + f8*(i64)G5 + f9*(i64)G4;
    i64 t4 = f0*(i64)g4 + F1*(i64)g3 + f2*(i64)g2 + F3*(i64)g1 + f4*(i64)g0
        +    F5*(i64)G9 + f6*(i64)G8 + F7*(i64)G7 + f8*(i64)G6 + F9*(i64)G5;
    i64 t5 = f0*(i64)g5 + f1*(i64)g4 + f2*(i64)g3 + f3*(i64)g2 + f4*(i64)g1
        +    f5*(i64)g0 + f6*(i64)G9 + f7*(i64)G8 + f8*(i64)G7 + f9*(i64)G6;
    i64 t6 = f0*(i64)g6 + F1*(i64)g5 + f2*(i64)g4 + F3*(i64)g3 + f4*(i64)g2
        +    F5*(i64)g1 + f6*(i64)g0 + F7*(i64)G9 + f8*(i64)G8 + F9*(i64)G7;
    i64 t7 = f0*(i64)g7 + f1*(i64)g6 + f2*(i64)g5 + f3*(i64)g4 + f4*(i64)g3
        +    f5*(i64)g2 + f6*(i64)g1 + f7*(i64)g0 + f8*(i64)G9 + f9*(i64)G8;
    i64 t8 = f0*(i64)g8 + F1*(i64)g7 + f2*(i64)g6 + F3*(i64)g5 + f4*(i64)g4
        +    F5*(i64)g3 + f6*(i64)g2 + F7*(i64)g1 + f8*(i64)g0 + F9*(i64)G9;
    i64 t9 = f0*(i64)g9 + f1*(i64)g8 + f2*(i64)g7 + f3*(i64)g6 + f4*(i64)g5
        +    f5*(i64)g4 + f6*(i64)g3 + f7*(i64)g2 + f8*(i64)g1 + f9*(i64)g0;
    // t0 < 0.67 * 2^61
    // t1 < 0.41 * 2^61
    // t2 < 0.52 * 2^61
    // t3 < 0.32 * 2^61
    // t4 < 0.38 * 2^61
    // t5 < 0.22 * 2^61
    // t6 < 0.23 * 2^61
    // t7 < 0.13 * 2^61
    // t8 < 0.09 * 2^61
    // t9 < 0.03 * 2^61

    FE_CARRY; // Everything below 2^62, Carry precondition OK
}

// Precondition
// -------------
//   |f0|, |f2|, |f4|, |f6|, |f8|  <  1.65 * 2^26
//   |f1|, |f3|, |f5|, |f7|, |f9|  <  1.65 * 2^25
//
// Note: we could use fe_mul() for this, but this is significantly faster
static void fe_sq(fe h, const fe f)
{
    i32 f0 = f[0]; i32 f1 = f[1]; i32 f2 = f[2]; i32 f3 = f[3]; i32 f4 = f[4];
    i32 f5 = f[5]; i32 f6 = f[6]; i32 f7 = f[7]; i32 f8 = f[8]; i32 f9 = f[9];
    i32 f0_2  = f0*2;   i32 f1_2  = f1*2;   i32 f2_2  = f2*2;   i32 f3_2 = f3*2;
    i32 f4_2  = f4*2;   i32 f5_2  = f5*2;   i32 f6_2  = f6*2;   i32 f7_2 = f7*2;
    i32 f5_38 = f5*38;  i32 f6_19 = f6*19;  i32 f7_38 = f7*38;
    i32 f8_19 = f8*19;  i32 f9_38 = f9*38;
    // |f0_2| , |f2_2| , |f4_2| , |f6_2| , |f8_2|  <  1.65 * 2^27
    // |f1_2| , |f3_2| , |f5_2| , |f7_2| , |f9_2|  <  1.65 * 2^26
    // |f5_38|, |f6_19|, |f7_38|, |f8_19|, |f9_38| <  2^31

    i64 t0 = f0  *(i64)f0    + f1_2*(i64)f9_38 + f2_2*(i64)f8_19
        +    f3_2*(i64)f7_38 + f4_2*(i64)f6_19 + f5  *(i64)f5_38;
    i64 t1 = f0_2*(i64)f1    + f2  *(i64)f9_38 + f3_2*(i64)f8_19
        +    f4  *(i64)f7_38 + f5_2*(i64)f6_19;
    i64 t2 = f0_2*(i64)f2    + f1_2*(i64)f1    + f3_2*(i64)f9_38
        +    f4_2*(i64)f8_19 + f5_2*(i64)f7_38 + f6  *(i64)f6_19;
    i64 t3 = f0_2*(i64)f3    + f1_2*(i64)f2    + f4  *(i64)f9_38
        +    f5_2*(i64)f8_19 + f6  *(i64)f7_38;
    i64 t4 = f0_2*(i64)f4    + f1_2*(i64)f3_2  + f2  *(i64)f2
        +    f5_2*(i64)f9_38 + f6_2*(i64)f8_19 + f7  *(i64)f7_38;
    i64 t5 = f0_2*(i64)f5    + f1_2*(i64)f4    + f2_2*(i64)f3
        +    f6  *(i64)f9_38 + f7_2*(i64)f8_19;
    i64 t6 = f0_2*(i64)f6    + f1_2*(i64)f5_2  + f2_2*(i64)f4
        +    f3_2*(i64)f3    + f7_2*(i64)f9_38 + f8  *(i64)f8_19;
    i64 t7 = f0_2*(i64)f7    + f1_2*(i64)f6    + f2_2*(i64)f5
        +    f3_2*(i64)f4    + f8  *(i64)f9_38;
    i64 t8 = f0_2*(i64)f8    + f1_2*(i64)f7_2  + f2_2*(i64)f6
        +    f3_2*(i64)f5_2  + f4  *(i64)f4    + f9  *(i64)f9_38;
    i64 t9 = f0_2*(i64)f9    + f1_2*(i64)f8    + f2_2*(i64)f7
        +    f3_2*(i64)f6    + f4  *(i64)f5_2;
    // t0 < 0.67 * 2^61
    // t1 < 0.41 * 2^61
    // t2 < 0.52 * 2^61
    // t3 < 0.32 * 2^61
    // t4 < 0.38 * 2^61
    // t5 < 0.22 * 2^61
    // t6 < 0.23 * 2^61
    // t7 < 0.13 * 2^61
    // t8 < 0.09 * 2^61
    // t9 < 0.03 * 2^61

    FE_CARRY;
}

// h = 2 * (f^2)
//
// Precondition
// -------------
//   |f0|, |f2|, |f4|, |f6|, |f8|  <  1.65 * 2^26
//   |f1|, |f3|, |f5|, |f7|, |f9|  <  1.65 * 2^25
//
// Note: we could implement fe_sq2() by copying fe_sq(), multiplying
// each limb by 2, *then* perform the carry.  This saves one carry.
// However, doing so with the stated preconditions does not work (t2
// would overflow).  There are 3 ways to solve this:
//
// 1. Show that t2 actually never overflows (it really does not).
// 2. Accept an additional carry, at a small lost of performance.
// 3. Make sure the input of fe_sq2() is freshly carried.
//
// SUPERCOP ref10 relies on (1).
// Monocypher chose (2) and (3), mostly to save code.
static void fe_sq2(fe h, const fe f)
{
    fe_sq(h, f);
    fe_mul_small(h, h, 2);
}

// This could be simplified, but it would be slower
static void fe_pow22523(fe out, const fe z)
{
    fe t0, t1, t2;
    fe_sq(t0, z);
    fe_sq(t1,t0);                   fe_sq(t1, t1);  fe_mul(t1, z, t1);
    fe_mul(t0, t0, t1);
    fe_sq(t0, t0);                                  fe_mul(t0, t1, t0);
    fe_sq(t1, t0);  FOR (i, 1,   5) fe_sq(t1, t1);  fe_mul(t0, t1, t0);
    fe_sq(t1, t0);  FOR (i, 1,  10) fe_sq(t1, t1);  fe_mul(t1, t1, t0);
    fe_sq(t2, t1);  FOR (i, 1,  20) fe_sq(t2, t2);  fe_mul(t1, t2, t1);
    fe_sq(t1, t1);  FOR (i, 1,  10) fe_sq(t1, t1);  fe_mul(t0, t1, t0);
    fe_sq(t1, t0);  FOR (i, 1,  50) fe_sq(t1, t1);  fe_mul(t1, t1, t0);
    fe_sq(t2, t1);  FOR (i, 1, 100) fe_sq(t2, t2);  fe_mul(t1, t2, t1);
    fe_sq(t1, t1);  FOR (i, 1,  50) fe_sq(t1, t1);  fe_mul(t0, t1, t0);
    fe_sq(t0, t0);  FOR (i, 1,   2) fe_sq(t0, t0);  fe_mul(out, t0, z);
    WIPE_BUFFER(t0);
    WIPE_BUFFER(t1);
    WIPE_BUFFER(t2);
}

// Inverting means multiplying by 2^255 - 21
// 2^255 - 21 = (2^252 - 3) * 8 + 3
// So we reuse the multiplication chain of fe_pow22523
static void fe_invert(fe out, const fe z)
{
    fe tmp;
    fe_pow22523(tmp, z);
    // tmp2^8 * z^3
    fe_sq(tmp, tmp);                        // 0
    fe_sq(tmp, tmp);  fe_mul(tmp, tmp, z);  // 1
    fe_sq(tmp, tmp);  fe_mul(out, tmp, z);  // 1
    WIPE_BUFFER(tmp);
}

//  Parity check.  Returns 0 if even, 1 if odd
static int fe_isodd(const fe f)
{
    u8 s[32];
    fe_tobytes(s, f);
    u8 isodd = s[0] & 1;
    WIPE_BUFFER(s);
    return isodd;
}

// Returns 1 if equal, 0 if not equal
static int fe_isequal(const fe f, const fe g)
{
    u8 fs[32];
    u8 gs[32];
    fe_tobytes(fs, f);
    fe_tobytes(gs, g);
    int isdifferent = crypto_verify32(fs, gs);
    WIPE_BUFFER(fs);
    WIPE_BUFFER(gs);
    return 1 + isdifferent;
}

// Inverse square root.
// Returns true if x is a non zero square, false otherwise.
// After the call:
//   isr = sqrt(1/x)        if x is non-zero square.
//   isr = sqrt(sqrt(-1)/x) if x is not a square.
//   isr = 0                if x is zero.
// We do not guarantee the sign of the square root.
//
// Notes:
// Let quartic = x^((p-1)/4)
//
// x^((p-1)/2) = chi(x)
// quartic^2   = chi(x)
// quartic     = sqrt(chi(x))
// quartic     = 1 or -1 or sqrt(-1) or -sqrt(-1)
//
// Note that x is a square if quartic is 1 or -1
// There are 4 cases to consider:
//
// if   quartic         = 1  (x is a square)
// then x^((p-1)/4)     = 1
//      x^((p-5)/4) * x = 1
//      x^((p-5)/4)     = 1/x
//      x^((p-5)/8)     = sqrt(1/x) or -sqrt(1/x)
//
// if   quartic                = -1  (x is a square)
// then x^((p-1)/4)            = -1
//      x^((p-5)/4) * x        = -1
//      x^((p-5)/4)            = -1/x
//      x^((p-5)/8)            = sqrt(-1)   / sqrt(x)
//      x^((p-5)/8) * sqrt(-1) = sqrt(-1)^2 / sqrt(x)
//      x^((p-5)/8) * sqrt(-1) = -1/sqrt(x)
//      x^((p-5)/8) * sqrt(-1) = -sqrt(1/x) or sqrt(1/x)
//
// if   quartic         = sqrt(-1)  (x is not a square)
// then x^((p-1)/4)     = sqrt(-1)
//      x^((p-5)/4) * x = sqrt(-1)
//      x^((p-5)/4)     = sqrt(-1)/x
//      x^((p-5)/8)     = sqrt(sqrt(-1)/x) or -sqrt(sqrt(-1)/x)
//
// Note that the product of two non-squares is always a square:
//   For any non-squares a and b, chi(a) = -1 and chi(b) = -1.
//   Since chi(x) = x^((p-1)/2), chi(a)*chi(b) = chi(a*b) = 1.
//   Therefore a*b is a square.
//
//   Since sqrt(-1) and x are both non-squares, their product is a
//   square, and we can compute their square root.
//
// if   quartic                = -sqrt(-1)  (x is not a square)
// then x^((p-1)/4)            = -sqrt(-1)
//      x^((p-5)/4) * x        = -sqrt(-1)
//      x^((p-5)/4)            = -sqrt(-1)/x
//      x^((p-5)/8)            = sqrt(-sqrt(-1)/x)
//      x^((p-5)/8)            = sqrt( sqrt(-1)/x) * sqrt(-1)
//      x^((p-5)/8) * sqrt(-1) = sqrt( sqrt(-1)/x) * sqrt(-1)^2
//      x^((p-5)/8) * sqrt(-1) = sqrt( sqrt(-1)/x) * -1
//      x^((p-5)/8) * sqrt(-1) = -sqrt(sqrt(-1)/x) or sqrt(sqrt(-1)/x)
static int invsqrt(fe isr, const fe x)
{
    fe check, quartic;
    fe_copy(check, x);
    fe_pow22523(isr, check);
    fe_sq (quartic, isr);
    fe_mul(quartic, quartic, check);
    fe_1  (check);          int p1 = fe_isequal(quartic, check);
    fe_neg(check, check );  int m1 = fe_isequal(quartic, check);
    fe_neg(check, sqrtm1);  int ms = fe_isequal(quartic, check);
    fe_mul(check, isr, sqrtm1);
    fe_ccopy(isr, check, m1 | ms);
    WIPE_BUFFER(quartic);
    WIPE_BUFFER(check);
    return p1 | m1;
}

// trim a scalar for scalar multiplication
static void trim_scalar(u8 scalar[32])
{
    scalar[ 0] &= 248;
    scalar[31] &= 127;
    scalar[31] |= 64;
}

// cvw: Export the trim_scalar function for external use
void crypto_x25519_clamp(uint8_t scalar[32]) {
    trim_scalar(scalar);
}

// get bit from scalar at position i
static int scalar_bit(const u8 s[32], int i)
{
    if (i < 0) { return 0; } // handle -1 for sliding windows
    return (s[i>>3] >> (i&7)) & 1;
}

///////////////
/// X-25519 /// Taken from SUPERCOP's ref10 implementation.
///////////////
static void scalarmult(u8 q[32], const u8 scalar[32], const u8 p[32],
                       int nb_bits)
{
    // computes the scalar product
    fe x1;
    fe_frombytes(x1, p);

    // computes the actual scalar product (the result is in x2 and z2)
    fe x2, z2, x3, z3, t0, t1;
    // Montgomery ladder
    // In projective coordinates, to avoid divisions: x = X / Z
    // We don't care about the y coordinate, it's only 1 bit of information
    fe_1(x2);        fe_0(z2); // "zero" point
    fe_copy(x3, x1); fe_1(z3); // "one"  point
    int swap = 0;
    for (int pos = nb_bits-1; pos >= 0; --pos) {
        // constant time conditional swap before ladder step
        int b = scalar_bit(scalar, pos);
        swap ^= b; // xor trick avoids swapping at the end of the loop
        fe_cswap(x2, x3, swap);
        fe_cswap(z2, z3, swap);
        swap = b;  // anticipates one last swap after the loop

        // Montgomery ladder step: replaces (P2, P3) by (P2*2, P2+P3)
        // with differential addition
        fe_sub(t0, x3, z3);
        fe_sub(t1, x2, z2);
        fe_add(x2, x2, z2);
        fe_add(z2, x3, z3);
        fe_mul(z3, t0, x2);
        fe_mul(z2, z2, t1);
        fe_sq (t0, t1    );
        fe_sq (t1, x2    );
        fe_add(x3, z3, z2);
        fe_sub(z2, z3, z2);
        fe_mul(x2, t1, t0);
        fe_sub(t1, t1, t0);
        fe_sq (z2, z2    );
        fe_mul_small(z3, t1, 121666);
        fe_sq (x3, x3    );
        fe_add(t0, t0, z3);
        fe_mul(z3, x1, z2);
        fe_mul(z2, t1, t0);
    }
    // last swap is necessary to compensate for the xor trick
    // Note: after this swap, P3 == P2 + P1.
    fe_cswap(x2, x3, swap);
    fe_cswap(z2, z3, swap);

    // normalises the coordinates: x == X / Z
    fe_invert(z2, z2);
    fe_mul(x2, x2, z2);
    fe_tobytes(q, x2);

    WIPE_BUFFER(x1);
    WIPE_BUFFER(x2);  WIPE_BUFFER(z2);  WIPE_BUFFER(t0);
    WIPE_BUFFER(x3);  WIPE_BUFFER(z3);  WIPE_BUFFER(t1);
}

// cvw: Hacked/kludged this in here to expose the function for BS-SPEKE
void crypto_x25519_scalarmult(uint8_t q[32], const uint8_t scalar[32],
                              const uint8_t p[32], int nb_bits) {
    scalarmult(q, scalar, p, nb_bits);
}

void crypto_x25519(u8       raw_shared_secret[32],
                   const u8 your_secret_key  [32],
                   const u8 their_public_key [32])
{
    // restrict the possible scalar values
    u8 e[32];
    COPY(e, your_secret_key, 32);
    trim_scalar(e);
    scalarmult(raw_shared_secret, e, their_public_key, 255);
    WIPE_BUFFER(e);
}

void crypto_x25519_public_key(u8       public_key[32],
                              const u8 secret_key[32])
{
    static const u8 base_point[32] = {9};
    crypto_x25519(public_key, secret_key, base_point);
}

///////////////////////////
/// Arithmetic modulo L ///
///////////////////////////
static const u32 L[8] = {0x5cf5d3ed, 0x5812631a, 0xa2f79cd6, 0x14def9de,
                         0x00000000, 0x00000000, 0x00000000, 0x10000000,};

//  p = a*b + p
static void multiply(u32 p[16], const u32 a[8], const u32 b[8])
{
    FOR (i, 0, 8) {
        u64 carry = 0;
        FOR (j, 0, 8) {
            carry  += p[i+j] + (u64)a[i] * b[j];
            p[i+j]  = (u32)carry;
            carry >>= 32;
        }
        p[i+8] = (u32)carry;
    }
}

static int is_above_l(const u32 x[8])
{
    // We work with L directly, in a 2's complement encoding
    // (-L == ~L + 1)
    u64 carry = 1;
    FOR (i, 0, 8) {
        carry += (u64)x[i] + ~L[i];
        carry >>= 32;
    }
    return carry;
}

// Final reduction modulo L, by conditionally removing L.
// if x < l     , then r = x
// if l <= x 2*l, then r = x-l
// otherwise the result will be wrong
static void remove_l(u32 r[8], const u32 x[8])
{
    u64 carry = is_above_l(x);
    u32 mask  = ~(u32)carry + 1; // carry == 0 or 1
    FOR (i, 0, 8) {
        carry += (u64)x[i] + (~L[i] & mask);
        r[i]   = (u32)carry;
        carry >>= 32;
    }
}

// Full reduction modulo L (Barrett reduction)
static void mod_l(u8 reduced[32], const u32 x[16])
{
    static const u32 r[9] = {0x0a2c131b,0xed9ce5a3,0x086329a7,0x2106215d,
                             0xffffffeb,0xffffffff,0xffffffff,0xffffffff,0xf,};
    // xr = x * r
    u32 xr[25] = {0};
    FOR (i, 0, 9) {
        u64 carry = 0;
        FOR (j, 0, 16) {
            carry  += xr[i+j] + (u64)r[i] * x[j];
            xr[i+j] = (u32)carry;
            carry >>= 32;
        }
        xr[i+16] = (u32)carry;
    }
    // xr = floor(xr / 2^512) * L
    // Since the result is guaranteed to be below 2*L,
    // it is enough to only compute the first 256 bits.
    // The division is performed by saying xr[i+16]. (16 * 32 = 512)
    ZERO(xr, 8);
    FOR (i, 0, 8) {
        u64 carry = 0;
        FOR (j, 0, 8-i) {
            carry   += xr[i+j] + (u64)xr[i+16] * L[j];
            xr[i+j] = (u32)carry;
            carry >>= 32;
        }
    }
    // xr = x - xr
    u64 carry = 1;
    FOR (i, 0, 8) {
        carry  += (u64)x[i] + ~xr[i];
        xr[i]   = (u32)carry;
        carry >>= 32;
    }
    // Final reduction modulo L (conditional subtraction)
    remove_l(xr, xr);
    store32_le_buf(reduced, xr, 8);

    WIPE_BUFFER(xr);
}

static void reduce(u8 r[64])
{
    u32 x[16];
    load32_le_buf(x, r, 16);
    mod_l(r, x);
    WIPE_BUFFER(x);
}

// r = (a * b) + c
static void mul_add(u8 r[32], const u8 a[32], const u8 b[32], const u8 c[32])
{
    u32 A[8];  load32_le_buf(A, a, 8);
    u32 B[8];  load32_le_buf(B, b, 8);
    u32 p[16];
    load32_le_buf(p, c, 8);
    ZERO(p + 8, 8);
    multiply(p, A, B);
    mod_l(r, p);
    WIPE_BUFFER(p);
    WIPE_BUFFER(A);
    WIPE_BUFFER(B);
}

///////////////
/// Ed25519 ///
///////////////

// Point (group element, ge) in a twisted Edwards curve,
// in extended projective coordinates.
// ge        : x  = X/Z, y  = Y/Z, T  = XY/Z
// ge_cached : Yp = X+Y, Ym = X-Y, T2 = T*D2
// ge_precomp: Z  = 1
typedef struct { fe X;  fe Y;  fe Z; fe T;  } ge;
typedef struct { fe Yp; fe Ym; fe Z; fe T2; } ge_cached;
typedef struct { fe Yp; fe Ym;       fe T2; } ge_precomp;

static void ge_zero(ge *p)
{
    fe_0(p->X);
    fe_1(p->Y);
    fe_1(p->Z);
    fe_0(p->T);
}

static void ge_tobytes(u8 s[32], const ge *h)
{
    fe recip, x, y;
    fe_invert(recip, h->Z);
    fe_mul(x, h->X, recip);
    fe_mul(y, h->Y, recip);
    fe_tobytes(s, y);
    s[31] ^= fe_isodd(x) << 7;

    WIPE_BUFFER(recip);
    WIPE_BUFFER(x);
    WIPE_BUFFER(y);
}

// h = s, where s is a point encoded in 32 bytes
//
// Variable time!  Inputs must not be secret!
// => Use only to *check* signatures.
//
// From the specifications:
//   The encoding of s contains y and the sign of x
//   x = sqrt((y^2 - 1) / (d*y^2 + 1))
// In extended coordinates:
//   X = x, Y = y, Z = 1, T = x*y
//
//    Note that num * den is a square iff num / den is a square
//    If num * den is not a square, the point was not on the curve.
// From the above:
//   Let num =   y^2 - 1
//   Let den = d*y^2 + 1
//   x = sqrt((y^2 - 1) / (d*y^2 + 1))
//   x = sqrt(num / den)
//   x = sqrt(num^2 / (num * den))
//   x = num * sqrt(1 / (num * den))
//
// Therefore, we can just compute:
//   num =   y^2 - 1
//   den = d*y^2 + 1
//   isr = invsqrt(num * den)  // abort if not square
//   x   = num * isr
// Finally, negate x if its sign is not as specified.
static int ge_frombytes_vartime(ge *h, const u8 s[32])
{
    fe_frombytes(h->Y, s);
    fe_1(h->Z);
    fe_sq (h->T, h->Y);        // t =   y^2
    fe_mul(h->X, h->T, d   );  // x = d*y^2
    fe_sub(h->T, h->T, h->Z);  // t =   y^2 - 1
    fe_add(h->X, h->X, h->Z);  // x = d*y^2 + 1
    fe_mul(h->X, h->T, h->X);  // x = (y^2 - 1) * (d*y^2 + 1)
    int is_square = invsqrt(h->X, h->X);
    if (!is_square) {
        return -1;             // Not on the curve, abort
    }
    fe_mul(h->X, h->T, h->X);  // x = sqrt((y^2 - 1) / (d*y^2 + 1))
    if (fe_isodd(h->X) != (s[31] >> 7)) {
        fe_neg(h->X, h->X);
    }
    fe_mul(h->T, h->X, h->Y);
    return 0;
}

static void ge_cache(ge_cached *c, const ge *p)
{
    fe_add (c->Yp, p->Y, p->X);
    fe_sub (c->Ym, p->Y, p->X);
    fe_copy(c->Z , p->Z      );
    fe_mul (c->T2, p->T, D2  );
}

// Internal buffers are not wiped! Inputs must not be secret!
// => Use only to *check* signatures.
static void ge_add(ge *s, const ge *p, const ge_cached *q)
{
    fe a, b;
    fe_add(a   , p->Y, p->X );
    fe_sub(b   , p->Y, p->X );
    fe_mul(a   , a   , q->Yp);
    fe_mul(b   , b   , q->Ym);
    fe_add(s->Y, a   , b    );
    fe_sub(s->X, a   , b    );

    fe_add(s->Z, p->Z, p->Z );
    fe_mul(s->Z, s->Z, q->Z );
    fe_mul(s->T, p->T, q->T2);
    fe_add(a   , s->Z, s->T );
    fe_sub(b   , s->Z, s->T );

    fe_mul(s->T, s->X, s->Y);
    fe_mul(s->X, s->X, b   );
    fe_mul(s->Y, s->Y, a   );
    fe_mul(s->Z, a   , b   );
}

// Internal buffers are not wiped! Inputs must not be secret!
// => Use only to *check* signatures.
static void ge_sub(ge *s, const ge *p, const ge_cached *q)
{
    ge_cached neg;
    fe_copy(neg.Ym, q->Yp);
    fe_copy(neg.Yp, q->Ym);
    fe_copy(neg.Z , q->Z );
    fe_neg (neg.T2, q->T2);
    ge_add(s, p, &neg);
}

static void ge_madd(ge *s, const ge *p, const ge_precomp *q, fe a, fe b)
{
    fe_add(a   , p->Y, p->X );
    fe_sub(b   , p->Y, p->X );
    fe_mul(a   , a   , q->Yp);
    fe_mul(b   , b   , q->Ym);
    fe_add(s->Y, a   , b    );
    fe_sub(s->X, a   , b    );

    fe_add(s->Z, p->Z, p->Z );
    fe_mul(s->T, p->T, q->T2);
    fe_add(a   , s->Z, s->T );
    fe_sub(b   , s->Z, s->T );

    fe_mul(s->T, s->X, s->Y);
    fe_mul(s->X, s->X, b   );
    fe_mul(s->Y, s->Y, a   );
    fe_mul(s->Z, a   , b   );
}

static void ge_msub(ge *s, const ge *p, const ge_precomp *q, fe a, fe b)
{
    fe_add(a   , p->Y, p->X );
    fe_sub(b   , p->Y, p->X );
    fe_mul(a   , a   , q->Ym);
    fe_mul(b   , b   , q->Yp);
    fe_add(s->Y, a   , b    );
    fe_sub(s->X, a   , b    );

    fe_add(s->Z, p->Z, p->Z );
    fe_mul(s->T, p->T, q->T2);
    fe_sub(a   , s->Z, s->T );
    fe_add(b   , s->Z, s->T );

    fe_mul(s->T, s->X, s->Y);
    fe_mul(s->X, s->X, b   );
    fe_mul(s->Y, s->Y, a   );
    fe_mul(s->Z, a   , b   );
}

static void ge_double(ge *s, const ge *p, ge *q)
{
    fe_sq (q->X, p->X);
    fe_sq (q->Y, p->Y);
    fe_sq2(q->Z, p->Z);
    fe_add(q->T, p->X, p->Y);
    fe_sq (s->T, q->T);
    fe_add(q->T, q->Y, q->X);
    fe_sub(q->Y, q->Y, q->X);
    fe_sub(q->X, s->T, q->T);
    fe_sub(q->Z, q->Z, q->Y);

    fe_mul(s->X, q->X , q->Z);
    fe_mul(s->Y, q->T , q->Y);
    fe_mul(s->Z, q->Y , q->Z);
    fe_mul(s->T, q->X , q->T);
}

// 5-bit signed window in cached format (Niels coordinates, Z=1)
static const ge_precomp b_window[8] = {
    {{25967493,-14356035,29566456,3660896,-12694345,
      4014787,27544626,-11754271,-6079156,2047605,},
     {-12545711,934262,-2722910,3049990,-727428,
      9406986,12720692,5043384,19500929,-15469378,},
     {-8738181,4489570,9688441,-14785194,10184609,
      -12363380,29287919,11864899,-24514362,-4438546,},},
    {{15636291,-9688557,24204773,-7912398,616977,
      -16685262,27787600,-14772189,28944400,-1550024,},
     {16568933,4717097,-11556148,-1102322,15682896,
      -11807043,16354577,-11775962,7689662,11199574,},
     {30464156,-5976125,-11779434,-15670865,23220365,
      15915852,7512774,10017326,-17749093,-9920357,},},
    {{10861363,11473154,27284546,1981175,-30064349,
      12577861,32867885,14515107,-15438304,10819380,},
     {4708026,6336745,20377586,9066809,-11272109,
      6594696,-25653668,12483688,-12668491,5581306,},
     {19563160,16186464,-29386857,4097519,10237984,
      -4348115,28542350,13850243,-23678021,-15815942,},},
    {{5153746,9909285,1723747,-2777874,30523605,
      5516873,19480852,5230134,-23952439,-15175766,},
     {-30269007,-3463509,7665486,10083793,28475525,
      1649722,20654025,16520125,30598449,7715701,},
     {28881845,14381568,9657904,3680757,-20181635,
      7843316,-31400660,1370708,29794553,-1409300,},},
    {{-22518993,-6692182,14201702,-8745502,-23510406,
      8844726,18474211,-1361450,-13062696,13821877,},
     {-6455177,-7839871,3374702,-4740862,-27098617,
      -10571707,31655028,-7212327,18853322,-14220951,},
     {4566830,-12963868,-28974889,-12240689,-7602672,
      -2830569,-8514358,-10431137,2207753,-3209784,},},
    {{-25154831,-4185821,29681144,7868801,-6854661,
      -9423865,-12437364,-663000,-31111463,-16132436,},
     {25576264,-2703214,7349804,-11814844,16472782,
      9300885,3844789,15725684,171356,6466918,},
     {23103977,13316479,9739013,-16149481,817875,
      -15038942,8965339,-14088058,-30714912,16193877,},},
    {{-33521811,3180713,-2394130,14003687,-16903474,
      -16270840,17238398,4729455,-18074513,9256800,},
     {-25182317,-4174131,32336398,5036987,-21236817,
      11360617,22616405,9761698,-19827198,630305,},
     {-13720693,2639453,-24237460,-7406481,9494427,
      -5774029,-6554551,-15960994,-2449256,-14291300,},},
    {{-3151181,-5046075,9282714,6866145,-31907062,
      -863023,-18940575,15033784,25105118,-7894876,},
     {-24326370,15950226,-31801215,-14592823,-11662737,
      -5090925,1573892,-2625887,2198790,-15804619,},
     {-3099351,10324967,-2241613,7453183,-5446979,
      -2735503,-13812022,-16236442,-32461234,-12290683,},},
};

// Incremental sliding windows (left to right)
// Based on Roberto Maria Avanzi[2005]
typedef struct {
    i16 next_index; // position of the next signed digit
    i8  next_digit; // next signed digit (odd number below 2^window_width)
    u8  next_check; // point at which we must check for a new window
} slide_ctx;

static void slide_init(slide_ctx *ctx, const u8 scalar[32])
{
    // scalar is guaranteed to be below L, either because we checked (s),
    // or because we reduced it modulo L (h_ram). L is under 2^253, so
    // so bits 253 to 255 are guaranteed to be zero. No need to test them.
    //
    // Note however that L is very close to 2^252, so bit 252 is almost
    // always zero.  If we were to start at bit 251, the tests wouldn't
    // catch the off-by-one error (constructing one that does would be
    // prohibitively expensive).
    //
    // We should still check bit 252, though.
    int i = 252;
    while (i > 0 && scalar_bit(scalar, i) == 0) {
        i--;
    }
    ctx->next_check = (u8)(i + 1);
    ctx->next_index = -1;
    ctx->next_digit = -1;
}

static int slide_step(slide_ctx *ctx, int width, int i, const u8 scalar[32])
{
    if (i == ctx->next_check) {
        if (scalar_bit(scalar, i) == scalar_bit(scalar, i - 1)) {
            ctx->next_check--;
        } else {
            // compute digit of next window
            int w = MIN(width, i + 1);
            int v = -(scalar_bit(scalar, i) << (w-1));
            FOR_T (int, j, 0, w-1) {
                v += scalar_bit(scalar, i-(w-1)+j) << j;
            }
            v += scalar_bit(scalar, i-w);
            int lsb = v & (~v + 1);            // smallest bit of v
            int s   = (   ((lsb & 0xAA) != 0)  // log2(lsb)
                       | (((lsb & 0xCC) != 0) << 1)
                       | (((lsb & 0xF0) != 0) << 2));
            ctx->next_index  = (i16)(i-(w-1)+s);
            ctx->next_digit  = (i8) (v >> s   );
            ctx->next_check -= (u8) w;
        }
    }
    return i == ctx->next_index ? ctx->next_digit: 0;
}

#define P_W_WIDTH 3 // Affects the size of the stack
#define B_W_WIDTH 5 // Affects the size of the binary
#define P_W_SIZE  (1<<(P_W_WIDTH-2))

// P = [b]B + [p]P, where B is the base point
//
// Variable time! Internal buffers are not wiped! Inputs must not be secret!
// => Use only to *check* signatures.
static void ge_double_scalarmult_vartime(ge *P, const u8 p[32], const u8 b[32])
{
    // cache P window for addition
    ge_cached cP[P_W_SIZE];
    {
        ge P2, tmp;
        ge_double(&P2, P, &tmp);
        ge_cache(&cP[0], P);
        FOR (i, 1, P_W_SIZE) {
            ge_add(&tmp, &P2, &cP[i-1]);
            ge_cache(&cP[i], &tmp);
        }
    }

    // Merged double and add ladder, fused with sliding
    slide_ctx p_slide;  slide_init(&p_slide, p);
    slide_ctx b_slide;  slide_init(&b_slide, b);
    int i = MAX(p_slide.next_check, b_slide.next_check);
    ge *sum = P;
    ge_zero(sum);
    while (i >= 0) {
        ge tmp;
        ge_double(sum, sum, &tmp);
        int p_digit = slide_step(&p_slide, P_W_WIDTH, i, p);
        int b_digit = slide_step(&b_slide, B_W_WIDTH, i, b);
        if (p_digit > 0) { ge_add(sum, sum, &cP[ p_digit / 2]); }
        if (p_digit < 0) { ge_sub(sum, sum, &cP[-p_digit / 2]); }
        fe t1, t2;
        if (b_digit > 0) { ge_madd(sum, sum, b_window +  b_digit/2, t1, t2); }
        if (b_digit < 0) { ge_msub(sum, sum, b_window + -b_digit/2, t1, t2); }
        i--;
    }
}

// R_check = s[B] - h_ram[pk], where B is the base point
//
// Variable time! Internal buffers are not wiped! Inputs must not be secret!
// => Use only to *check* signatures.
static int ge_r_check(u8 R_check[32], u8 s[32], u8 h_ram[32], u8 pk[32])
{
    ge  A;      // not secret, not wiped
    u32 s32[8]; // not secret, not wiped
    load32_le_buf(s32, s, 8);
    if (ge_frombytes_vartime(&A, pk) ||         // A = pk
        is_above_l(s32)) {                      // prevent s malleability
        return -1;
    }
    fe_neg(A.X, A.X);
    fe_neg(A.T, A.T);                           // A = -pk
    ge_double_scalarmult_vartime(&A, h_ram, s); // A = [s]B - [h_ram]pk
    ge_tobytes(R_check, &A);                    // R_check = A
    return 0;
}

// 5-bit signed comb in cached format (Niels coordinates, Z=1)
static const ge_precomp b_comb_low[8] = {
    {{-6816601,-2324159,-22559413,124364,18015490,
      8373481,19993724,1979872,-18549925,9085059,},
     {10306321,403248,14839893,9633706,8463310,
      -8354981,-14305673,14668847,26301366,2818560,},
     {-22701500,-3210264,-13831292,-2927732,-16326337,
      -14016360,12940910,177905,12165515,-2397893,},},
    {{-12282262,-7022066,9920413,-3064358,-32147467,
      2927790,22392436,-14852487,2719975,16402117,},
     {-7236961,-4729776,2685954,-6525055,-24242706,
      -15940211,-6238521,14082855,10047669,12228189,},
     {-30495588,-12893761,-11161261,3539405,-11502464,
      16491580,-27286798,-15030530,-7272871,-15934455,},},
    {{17650926,582297,-860412,-187745,-12072900,