-
Charles Wright authoredCharles Wright authored
bsspeke.c 12.82 KiB
/*
* bsspeke.c - BS-SPEKE over Curve25519
*
* Author: Charles V. Wright <cvwright@futo.org>
*
* Copyright (c) 2022 FUTO Holdings, Inc.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "monocypher.h"
#include "bsspeke.h"
void
bsspeke_client_init(bsspeke_client_ctx *ctx,
const char* client_id, const size_t client_id_len,
const char* server_id, const size_t server_id_len,
const char* password, const size_t password_len
) {
ctx->client_id = (uint8_t *)client_id;
ctx->client_id_len = client_id_len;
ctx->server_id = (uint8_t *)server_id;
ctx->server_id_len = server_id_len;
ctx->password = (uint8_t *)password;
ctx->password_len = password_len;
}
void
bsspeke_client_generate_message1(bsspeke_msg1_t *msg1,
bsspeke_client_ctx *client
) {
// 1. Hash the client's password, client_id, server_id to a point on the curve
uint8_t scalar_hash[32];
uint8_t curve_point[32];
{
crypto_blake2b_ctx bctx;
// Give us a 256 bit (32 byte) hash; Don't use a key
crypto_blake2b_general_init(&bctx, 32, NULL, 0);
// Add the client id, server id, and the password to the hash
crypto_blake2b_update(&bctx,
(const uint8_t *)(client->password),
client->password_len);
crypto_blake2b_update(&bctx,
(const uint8_t *)(client->client_id),
client->client_id_len);
crypto_blake2b_update(&bctx,
(const uint8_t *)(client->server_id),
client->server_id_len);
// Write the digest value into `scalar_hash`
crypto_blake2b_final(&bctx, scalar_hash);
}
// Now use Elligator to map our scalar hash to a point on the curve
crypto_hidden_to_curve(curve_point, scalar_hash);
// 2. Generate random r
// * Actually generate 1/r first, and clamp() it
// That way we know it will always lead us back to a point on the curve
// * Then use the inverse of 1/r as `r`
// FIXME: On second thought, monocypher seems to handle all of this complexity for us. Let's see what happens if we just do things the straightforward way for now...
arc4random_buf(client->r, 32);
crypto_x25519_clamp(client->r);
// 3. Multiply our curve point by r
crypto_x25519_scalarmult(msg1->blind, client->r, curve_point, 256);
return;
}
void
bsspeke_server_init(bsspeke_server_ctx *ctx,
const char* server_id
) {
ctx->server_id = server_id;
}
void
bsspeke_server_generate_message2(bsspeke_msg2_t *msg2,
const bsspeke_msg1_t *msg1,
const uint8_t *salt, const size_t salt_len,
uint8_t P[32], uint8_t V[32],
uint32_t phf_blocks,
uint32_t phf_iterations,
bsspeke_server_ctx *server_ctx
) {
// Hash the salt
uint8_t H_salt[32];
crypto_blake2b_general(H_salt, 32, NULL, 0, salt, salt_len);
// Use clamp() to ensure we stay on the curve in the multiply below
crypto_x25519_clamp(H_salt);
// Multiply H(salt) by msg1->blind, save into msg2->blind_salt
crypto_x25519_scalarmult(msg2->blind_salt, H_salt, msg1->blind, 256);
// Generate random ephemeral private key b, save it in ctx->b
arc4random_buf(server_ctx->b, 32);
crypto_x25519_clamp(server_ctx->b);
// Compute public key B = b * P, save it in msg2->B
crypto_x25519_scalarmult(server_ctx->B, server_ctx->b, P, 256);
// Copy the public key into the outgoing message as well
memcpy(msg2->B, server_ctx->B, 32);
// Copy the PHF params too
msg2->phf_blocks = phf_blocks;
msg2->phf_iterations = phf_iterations;
return;
}
int
bsspeke_client_generate_message3(bsspeke_msg3_t *msg3,
const bsspeke_msg2_t *msg2,
bsspeke_client_ctx *client_ctx
) {
// Sanity checks first, before we do any work
if( msg2->phf_blocks < BSSPEKE_MIN_PHF_BLOCKS ) {
return -1;
}
if( msg2->phf_iterations < BSSPEKE_MIN_PHF_ITERATIONS ) {
return -1;
}
uint8_t oblivious_salt[32];
// Multiply the blinded salt by 1/r to get the oblivious salt
// Here we rely on Monocypher to do the heavy lifting for us
crypto_x25519_inverse(oblivious_salt, client_ctx->r, msg2->blind_salt);
// Hash the oblivious salt together with the id's to create the salt for the PHF
uint8_t password_hash[64];
uint8_t phf_salt[32];
{
crypto_blake2b_ctx hash_ctx;
crypto_blake2b_general_init(&hash_ctx, 32, NULL, 0);
crypto_blake2b_update(&hash_ctx, oblivious_salt, 32);
crypto_blake2b_update(&hash_ctx,
client_ctx->client_id,
client_ctx->client_id_len);
crypto_blake2b_update(&hash_ctx,
client_ctx->server_id,
client_ctx->server_id_len);
crypto_blake2b_final(&hash_ctx, phf_salt);
}
void *work_area;
if ((work_area = malloc(msg2->phf_blocks * 1024)) == NULL) {
return -1;
}
crypto_argon2i(password_hash, 64, work_area,
msg2->phf_blocks, msg2->phf_iterations,
client_ctx->password, client_ctx->password_len,
phf_salt, 32);
free(work_area);
// p || v = pwKdf(password, BlindSalt, idC, idS, settings)
uint8_t *p = &(password_hash[0]);
uint8_t *v = &(password_hash[32]);
// Hash p onto the curve to get this user's base point P
uint8_t P[32];
crypto_hidden_to_curve(P, p);
// Generate a random ephemeral private key a, store it in ctx->a
arc4random_buf(client_ctx->a, 32);
crypto_x25519_clamp(client_ctx->a);
// Generate the ephemeral public key A = a * P, store it in msg3->A
crypto_x25519_scalarmult(msg3->A, client_ctx->a, P, 256);
// Compute the two Diffie-Hellman shared secrets
// DH shared secret from a * B
uint8_t a_B[32];
crypto_x25519(a_B, client_ctx->a, msg2->B);
// DH shared secret from v * B
uint8_t v_B[32];
crypto_x25519(v_B, v, msg2->B);
// Hash everything we know so far to generate our key, save it in ctx->K_c
{
crypto_blake2b_ctx hash_ctx;
crypto_blake2b_general_init(&hash_ctx, 32, NULL, 0);
crypto_blake2b_update(&hash_ctx,
client_ctx->client_id,
client_ctx->client_id_len);
crypto_blake2b_update(&hash_ctx,
client_ctx->server_id,
client_ctx->server_id_len);
crypto_blake2b_update(&hash_ctx, msg3->A, 32);
crypto_blake2b_update(&hash_ctx, msg2->B, 32);
crypto_blake2b_update(&hash_ctx, a_B, 32);
crypto_blake2b_update(&hash_ctx, v_B, 32);
crypto_blake2b_final(&hash_ctx, client_ctx->K_c);
}
// Hash k and the client modifier to get our verifier, save it in msg3->client_verifier
{
crypto_blake2b_ctx hash_ctx;
crypto_blake2b_general_init(&hash_ctx, 32, NULL, 0);
crypto_blake2b_update(&hash_ctx, client_ctx->K_c, 32);
crypto_blake2b_update(&hash_ctx,
BSSPEKE_VERIFY_CLIENT_MODIFIER,
BSSPEKE_VERIFY_CLIENT_MODIFIER_LEN);
crypto_blake2b_final(&hash_ctx, msg3->client_verifier);
}
return 0;
}
int
bsspeke_server_generate_message4(bsspeke_msg4_t *msg4,
const bsspeke_msg3_t *msg3,
bsspeke_server_ctx *server_ctx
) {
// Compute the two Diffie-Hellman shared secrets
// DH shared secret from b * A
uint8_t b_A[32];
crypto_x25519(b_A, server_ctx->b, msg3->A);
// DH shared secret from b * V
uint8_t b_V[32];
crypto_x25519(b_V, server_ctx->b, server_ctx->V);
// Hash everything we've learned so far to generate k, save it in ctx->k
{
crypto_blake2b_ctx hash_ctx;
crypto_blake2b_general_init(&hash_ctx, 32, NULL, 0);
crypto_blake2b_update(&hash_ctx,
server_ctx->client_id,
server_ctx->client_id_len);
crypto_blake2b_update(&hash_ctx,
server_ctx->server_id,
server_ctx->server_id_len);
crypto_blake2b_update(&hash_ctx, msg3->A, 32);
crypto_blake2b_update(&hash_ctx, server_ctx->B, 32);
crypto_blake2b_update(&hash_ctx, b_A, 32);
crypto_blake2b_update(&hash_ctx, b_V, 32);
crypto_blake2b_final(&hash_ctx, server_ctx->K_s);
}
// Check that the client's hash is correct
// Compute H( k || VERIFY_CLIENT_MODIFIER )
uint8_t my_client_verifier[32];
{
crypto_blake2b_ctx hash_ctx;
crypto_blake2b_general_init(&hash_ctx, 32, NULL, 0);
crypto_blake2b_update(&hash_ctx, server_ctx->K_s, 32);
crypto_blake2b_update(&hash_ctx,
BSSPEKE_VERIFY_CLIENT_MODIFIER,
BSSPEKE_VERIFY_CLIENT_MODIFIER_LEN);
crypto_blake2b_final(&hash_ctx, my_client_verifier);
}
// Compare vs msg3->client_verifier
if( crypto_verify32(msg3->client_verifier, my_client_verifier) != 0 ) {
return -1;
}
// Compute our own verifier H( k || VERIFY_SERVER_MODIFIER ), save it in msg4->server_verifier
{
crypto_blake2b_ctx hash_ctx;
crypto_blake2b_general_init(&hash_ctx, 32, NULL, 0);
crypto_blake2b_update(&hash_ctx, server_ctx->K_s, 32);
crypto_blake2b_update(&hash_ctx,
BSSPEKE_VERIFY_SERVER_MODIFIER,
BSSPEKE_VERIFY_SERVER_MODIFIER_LEN);
crypto_blake2b_final(&hash_ctx, msg4->server_verifier);
}
// If we made it this far, return success
return 0;
}
int
bsspeke_client_verify_message4(const bsspeke_msg4_t *msg4,
const bsspeke_client_ctx *client_ctx
) {
// Compute our own version of the server's verifier hash
uint8_t my_server_verifier[32];
{
crypto_blake2b_ctx hash_ctx;
crypto_blake2b_general_init(&hash_ctx, 32, NULL, 0);
crypto_blake2b_update(&hash_ctx, client_ctx->K_c, 32);
crypto_blake2b_update(&hash_ctx,
BSSPEKE_VERIFY_SERVER_MODIFIER,
BSSPEKE_VERIFY_SERVER_MODIFIER_LEN);
crypto_blake2b_final(&hash_ctx, my_server_verifier);
}
// If the hashes don't match, return failure
if( crypto_verify32(msg4->server_verifier, my_server_verifier) != 0 ) {
return -1;
}
// Otherwise, return success
return 0;
}
int main(int argc, char *argv[])
{
// Before execution of the protocol
// Both have:
// idS = server identity
char *server_id;
// Client has:
// idC = client identity
char *client_id;
char *password;
// Server has these for "idC":
// salt
// settings
// P = hashToPoint(p)
// V = v * P
uint8_t salt[32];
uint8_t P[32]; // curve point
uint8_t V[32]; // curve point
// Step 1: Client hashes password, maps to a point on the curve, blinds with a random value
// C: r = random()
// C: R = r * hashToPoint(H(password, idC, idS))
// C->S: idC, R
uint8_t r[32]; // scalar
uint8_t R[32]; // curve point
// Step 2: Server generates response with blind salt
// S: b = random()
// S: B = b * P
// S: R' = H(salt) * R
// C<-S: B, R', settings
uint8_t b[32]; // scalar
uint8_t B[32]; // curve point
uint8_t R_prime[32]; // curve point
// Step 3:
// C: BlindSalt = (1/r) * R'
// C: p || v = pwKdf(password, BlindSalt, idC, idS, settings)
// C: P = hashToPoint(p)
// C: a = random()
// C: A = a * P
// C: K_c = H(idC, idS, A, B, a * B, v * B)
// C: verifierC = H(K_c, verifyCModifier)
// C->S: A, verifierC[, encryptedDataC]
uint8_t blind_salt[32]; // curve point
uint8_t password_hash[64]; // hash
uint8_t client_P[32]; // curve point
uint8_t a[32]; // scalar
uint8_t A[32]; // curve point
uint8_t K_c[32]; // hash
uint8_t verifierC[32]; // hash
// Step 4:
// S: K_s = H(idC, idS, A, B, b * A, b * V)
// S: Checks verifierC == H(K_s, verifyCModifier)
// S: verifierS = H(K_s, verifySModifier)
// C<-S: verifierS[, encryptedDataS]
uint8_t K_s[32]; // hash
uint8_t server_hash[32]; // hash -- should match verifierC
// Step 5:
// C: Checks verifierS == H(K_c, verifySModifier)
uint8_t client_hash[32]; // hash -- should match verifierS
return 0;
}