diff --git a/native/jni/src/suggest/policyimpl/dictionary/binary_format.h b/native/jni/src/suggest/policyimpl/dictionary/binary_format.h
deleted file mode 100644
index 23f4c7fece3c48dc3e8b26f6ddf85370d36f73d7..0000000000000000000000000000000000000000
--- a/native/jni/src/suggest/policyimpl/dictionary/binary_format.h
+++ /dev/null
@@ -1,470 +0,0 @@
-/*
- * Copyright (C) 2011 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#ifndef LATINIME_BINARY_FORMAT_H
-#define LATINIME_BINARY_FORMAT_H
-
-#include <stdint.h>
-
-#include "suggest/core/dictionary/probability_utils.h"
-#include "utils/char_utils.h"
-
-namespace latinime {
-
-class BinaryFormat {
- public:
-    // Mask and flags for children address type selection.
-    static const int MASK_GROUP_ADDRESS_TYPE = 0xC0;
-
-    // Flag for single/multiple char group
-    static const int FLAG_HAS_MULTIPLE_CHARS = 0x20;
-
-    // Flag for terminal groups
-    static const int FLAG_IS_TERMINAL = 0x10;
-
-    // Flag for shortcut targets presence
-    static const int FLAG_HAS_SHORTCUT_TARGETS = 0x08;
-    // Flag for bigram presence
-    static const int FLAG_HAS_BIGRAMS = 0x04;
-    // Flag for non-words (typically, shortcut only entries)
-    static const int FLAG_IS_NOT_A_WORD = 0x02;
-    // Flag for blacklist
-    static const int FLAG_IS_BLACKLISTED = 0x01;
-
-    // Attribute (bigram/shortcut) related flags:
-    // Flag for presence of more attributes
-    static const int FLAG_ATTRIBUTE_HAS_NEXT = 0x80;
-    // Flag for sign of offset. If this flag is set, the offset value must be negated.
-    static const int FLAG_ATTRIBUTE_OFFSET_NEGATIVE = 0x40;
-
-    // Mask for attribute probability, stored on 4 bits inside the flags byte.
-    static const int MASK_ATTRIBUTE_PROBABILITY = 0x0F;
-
-    // Mask and flags for attribute address type selection.
-    static const int MASK_ATTRIBUTE_ADDRESS_TYPE = 0x30;
-
-    static int getGroupCountAndForwardPointer(const uint8_t *const dict, int *pos);
-    static uint8_t getFlagsAndForwardPointer(const uint8_t *const dict, int *pos);
-    static int getCodePointAndForwardPointer(const uint8_t *const dict, int *pos);
-    static int readProbabilityWithoutMovingPointer(const uint8_t *const dict, const int pos);
-    static int skipOtherCharacters(const uint8_t *const dict, const int pos);
-    static int skipChildrenPosition(const uint8_t flags, const int pos);
-    static int skipProbability(const uint8_t flags, const int pos);
-    static int skipShortcuts(const uint8_t *const dict, const uint8_t flags, const int pos);
-    static int skipChildrenPosAndAttributes(const uint8_t *const dict, const uint8_t flags,
-            const int pos);
-    static int readChildrenPosition(const uint8_t *const dict, const uint8_t flags, const int pos);
-    static bool hasChildrenInFlags(const uint8_t flags);
-    static int getTerminalPosition(const uint8_t *const root, const int *const inWord,
-            const int length, const bool forceLowerCaseSearch);
-    static int getCodePointsAndProbabilityAndReturnCodePointCount(
-            const uint8_t *const root, const int nodePos, const int maxCodePointCount,
-            int *const outCodePoints, int *const outUnigramProbability);
-
- private:
-    DISALLOW_IMPLICIT_CONSTRUCTORS(BinaryFormat);
-
-    static const int FLAG_GROUP_ADDRESS_TYPE_NOADDRESS = 0x00;
-    static const int FLAG_GROUP_ADDRESS_TYPE_ONEBYTE = 0x40;
-    static const int FLAG_GROUP_ADDRESS_TYPE_TWOBYTES = 0x80;
-    static const int FLAG_GROUP_ADDRESS_TYPE_THREEBYTES = 0xC0;
-    static const int FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE = 0x10;
-    static const int FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES = 0x20;
-    static const int FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTES = 0x30;
-
-    static const int CHARACTER_ARRAY_TERMINATOR_SIZE = 1;
-    static const int MINIMAL_ONE_BYTE_CHARACTER_VALUE = 0x20;
-    static const int CHARACTER_ARRAY_TERMINATOR = 0x1F;
-    static const int MULTIPLE_BYTE_CHARACTER_ADDITIONAL_SIZE = 2;
-    static const int NO_FLAGS = 0;
-    static int skipAllAttributes(const uint8_t *const dict, const uint8_t flags, const int pos);
-    static int skipBigrams(const uint8_t *const dict, const uint8_t flags, const int pos);
-};
-
-AK_FORCE_INLINE int BinaryFormat::getGroupCountAndForwardPointer(const uint8_t *const dict,
-        int *pos) {
-    const int msb = dict[(*pos)++];
-    if (msb < 0x80) return msb;
-    return ((msb & 0x7F) << 8) | dict[(*pos)++];
-}
-
-inline uint8_t BinaryFormat::getFlagsAndForwardPointer(const uint8_t *const dict, int *pos) {
-    return dict[(*pos)++];
-}
-
-AK_FORCE_INLINE int BinaryFormat::getCodePointAndForwardPointer(const uint8_t *const dict,
-        int *pos) {
-    const int origin = *pos;
-    const int codePoint = dict[origin];
-    if (codePoint < MINIMAL_ONE_BYTE_CHARACTER_VALUE) {
-        if (codePoint == CHARACTER_ARRAY_TERMINATOR) {
-            *pos = origin + 1;
-            return NOT_A_CODE_POINT;
-        } else {
-            *pos = origin + 3;
-            const int char_1 = codePoint << 16;
-            const int char_2 = char_1 + (dict[origin + 1] << 8);
-            return char_2 + dict[origin + 2];
-        }
-    } else {
-        *pos = origin + 1;
-        return codePoint;
-    }
-}
-
-inline int BinaryFormat::readProbabilityWithoutMovingPointer(const uint8_t *const dict,
-        const int pos) {
-    return dict[pos];
-}
-
-AK_FORCE_INLINE int BinaryFormat::skipOtherCharacters(const uint8_t *const dict, const int pos) {
-    int currentPos = pos;
-    int character = dict[currentPos++];
-    while (CHARACTER_ARRAY_TERMINATOR != character) {
-        if (character < MINIMAL_ONE_BYTE_CHARACTER_VALUE) {
-            currentPos += MULTIPLE_BYTE_CHARACTER_ADDITIONAL_SIZE;
-        }
-        character = dict[currentPos++];
-    }
-    return currentPos;
-}
-
-static inline int attributeAddressSize(const uint8_t flags) {
-    static const int ATTRIBUTE_ADDRESS_SHIFT = 4;
-    return (flags & BinaryFormat::MASK_ATTRIBUTE_ADDRESS_TYPE) >> ATTRIBUTE_ADDRESS_SHIFT;
-    /* Note: this is a value-dependant optimization of what may probably be
-       more readably written this way:
-       switch (flags * BinaryFormat::MASK_ATTRIBUTE_ADDRESS_TYPE) {
-       case FLAG_ATTRIBUTE_ADDRESS_TYPE_ONEBYTE: return 1;
-       case FLAG_ATTRIBUTE_ADDRESS_TYPE_TWOBYTES: return 2;
-       case FLAG_ATTRIBUTE_ADDRESS_TYPE_THREEBYTE: return 3;
-       default: return 0;
-       }
-    */
-}
-
-static AK_FORCE_INLINE int skipExistingBigrams(const uint8_t *const dict, const int pos) {
-    int currentPos = pos;
-    uint8_t flags = BinaryFormat::getFlagsAndForwardPointer(dict, &currentPos);
-    while (flags & BinaryFormat::FLAG_ATTRIBUTE_HAS_NEXT) {
-        currentPos += attributeAddressSize(flags);
-        flags = BinaryFormat::getFlagsAndForwardPointer(dict, &currentPos);
-    }
-    currentPos += attributeAddressSize(flags);
-    return currentPos;
-}
-
-static inline int childrenAddressSize(const uint8_t flags) {
-    static const int CHILDREN_ADDRESS_SHIFT = 6;
-    return (BinaryFormat::MASK_GROUP_ADDRESS_TYPE & flags) >> CHILDREN_ADDRESS_SHIFT;
-    /* See the note in attributeAddressSize. The same applies here */
-}
-
-static AK_FORCE_INLINE int shortcutByteSize(const uint8_t *const dict, const int pos) {
-    return (static_cast<int>(dict[pos] << 8)) + (dict[pos + 1]);
-}
-
-inline int BinaryFormat::skipChildrenPosition(const uint8_t flags, const int pos) {
-    return pos + childrenAddressSize(flags);
-}
-
-inline int BinaryFormat::skipProbability(const uint8_t flags, const int pos) {
-    return FLAG_IS_TERMINAL & flags ? pos + 1 : pos;
-}
-
-AK_FORCE_INLINE int BinaryFormat::skipShortcuts(const uint8_t *const dict, const uint8_t flags,
-        const int pos) {
-    if (FLAG_HAS_SHORTCUT_TARGETS & flags) {
-        return pos + shortcutByteSize(dict, pos);
-    } else {
-        return pos;
-    }
-}
-
-AK_FORCE_INLINE int BinaryFormat::skipBigrams(const uint8_t *const dict, const uint8_t flags,
-        const int pos) {
-    if (FLAG_HAS_BIGRAMS & flags) {
-        return skipExistingBigrams(dict, pos);
-    } else {
-        return pos;
-    }
-}
-
-AK_FORCE_INLINE int BinaryFormat::skipAllAttributes(const uint8_t *const dict, const uint8_t flags,
-        const int pos) {
-    // This function skips all attributes: shortcuts and bigrams.
-    int newPos = pos;
-    newPos = skipShortcuts(dict, flags, newPos);
-    newPos = skipBigrams(dict, flags, newPos);
-    return newPos;
-}
-
-AK_FORCE_INLINE int BinaryFormat::skipChildrenPosAndAttributes(const uint8_t *const dict,
-        const uint8_t flags, const int pos) {
-    int currentPos = pos;
-    currentPos = skipChildrenPosition(flags, currentPos);
-    currentPos = skipAllAttributes(dict, flags, currentPos);
-    return currentPos;
-}
-
-AK_FORCE_INLINE int BinaryFormat::readChildrenPosition(const uint8_t *const dict,
-        const uint8_t flags, const int pos) {
-    int offset = 0;
-    switch (MASK_GROUP_ADDRESS_TYPE & flags) {
-        case FLAG_GROUP_ADDRESS_TYPE_ONEBYTE:
-            offset = dict[pos];
-            break;
-        case FLAG_GROUP_ADDRESS_TYPE_TWOBYTES:
-            offset = dict[pos] << 8;
-            offset += dict[pos + 1];
-            break;
-        case FLAG_GROUP_ADDRESS_TYPE_THREEBYTES:
-            offset = dict[pos] << 16;
-            offset += dict[pos + 1] << 8;
-            offset += dict[pos + 2];
-            break;
-        default:
-            // If we come here, it means we asked for the children of a word with
-            // no children.
-            return -1;
-    }
-    return pos + offset;
-}
-
-inline bool BinaryFormat::hasChildrenInFlags(const uint8_t flags) {
-    return (FLAG_GROUP_ADDRESS_TYPE_NOADDRESS != (MASK_GROUP_ADDRESS_TYPE & flags));
-}
-
-// This function gets the byte position of the last chargroup of the exact matching word in the
-// dictionary. If no match is found, it returns NOT_A_VALID_WORD_POS.
-AK_FORCE_INLINE int BinaryFormat::getTerminalPosition(const uint8_t *const root,
-        const int *const inWord, const int length, const bool forceLowerCaseSearch) {
-    int pos = 0;
-    int wordPos = 0;
-
-    while (true) {
-        // If we already traversed the tree further than the word is long, there means
-        // there was no match (or we would have found it).
-        if (wordPos >= length) return NOT_A_VALID_WORD_POS;
-        int charGroupCount = BinaryFormat::getGroupCountAndForwardPointer(root, &pos);
-        const int wChar = forceLowerCaseSearch
-                ? CharUtils::toLowerCase(inWord[wordPos]) : inWord[wordPos];
-        while (true) {
-            // If there are no more character groups in this node, it means we could not
-            // find a matching character for this depth, therefore there is no match.
-            if (0 >= charGroupCount) return NOT_A_VALID_WORD_POS;
-            const int charGroupPos = pos;
-            const uint8_t flags = BinaryFormat::getFlagsAndForwardPointer(root, &pos);
-            int character = BinaryFormat::getCodePointAndForwardPointer(root, &pos);
-            if (character == wChar) {
-                // This is the correct node. Only one character group may start with the same
-                // char within a node, so either we found our match in this node, or there is
-                // no match and we can return NOT_A_VALID_WORD_POS. So we will check all the
-                // characters in this character group indeed does match.
-                if (FLAG_HAS_MULTIPLE_CHARS & flags) {
-                    character = BinaryFormat::getCodePointAndForwardPointer(root, &pos);
-                    while (NOT_A_CODE_POINT != character) {
-                        ++wordPos;
-                        // If we shoot the length of the word we search for, or if we find a single
-                        // character that does not match, as explained above, it means the word is
-                        // not in the dictionary (by virtue of this chargroup being the only one to
-                        // match the word on the first character, but not matching the whole word).
-                        if (wordPos >= length) return NOT_A_VALID_WORD_POS;
-                        if (inWord[wordPos] != character) return NOT_A_VALID_WORD_POS;
-                        character = BinaryFormat::getCodePointAndForwardPointer(root, &pos);
-                    }
-                }
-                // If we come here we know that so far, we do match. Either we are on a terminal
-                // and we match the length, in which case we found it, or we traverse children.
-                // If we don't match the length AND don't have children, then a word in the
-                // dictionary fully matches a prefix of the searched word but not the full word.
-                ++wordPos;
-                if (FLAG_IS_TERMINAL & flags) {
-                    if (wordPos == length) {
-                        return charGroupPos;
-                    }
-                    pos = BinaryFormat::skipProbability(FLAG_IS_TERMINAL, pos);
-                }
-                if (FLAG_GROUP_ADDRESS_TYPE_NOADDRESS == (MASK_GROUP_ADDRESS_TYPE & flags)) {
-                    return NOT_A_VALID_WORD_POS;
-                }
-                // We have children and we are still shorter than the word we are searching for, so
-                // we need to traverse children. Put the pointer on the children position, and
-                // break
-                pos = BinaryFormat::readChildrenPosition(root, flags, pos);
-                break;
-            } else {
-                // This chargroup does not match, so skip the remaining part and go to the next.
-                if (FLAG_HAS_MULTIPLE_CHARS & flags) {
-                    pos = BinaryFormat::skipOtherCharacters(root, pos);
-                }
-                pos = BinaryFormat::skipProbability(flags, pos);
-                pos = BinaryFormat::skipChildrenPosAndAttributes(root, flags, pos);
-            }
-            --charGroupCount;
-        }
-    }
-}
-
-// This function searches for a terminal in the dictionary by its address.
-// Due to the fact that words are ordered in the dictionary in a strict breadth-first order,
-// it is possible to check for this with advantageous complexity. For each node, we search
-// for groups with children and compare the children address with the address we look for.
-// When we shoot the address we look for, it means the word we look for is in the children
-// of the previous group. The only tricky part is the fact that if we arrive at the end of a
-// node with the last group's children address still less than what we are searching for, we
-// must descend the last group's children (for example, if the word we are searching for starts
-// with a z, it's the last group of the root node, so all children addresses will be smaller
-// than the address we look for, and we have to descend the z node).
-/* Parameters :
- * root: the dictionary buffer
- * address: the byte position of the last chargroup of the word we are searching for (this is
- *   what is stored as the "bigram address" in each bigram)
- * outword: an array to write the found word, with MAX_WORD_LENGTH size.
- * outUnigramProbability: a pointer to an int to write the probability into.
- * Return value : the length of the word, of 0 if the word was not found.
- */
-AK_FORCE_INLINE int BinaryFormat::getCodePointsAndProbabilityAndReturnCodePointCount(
-        const uint8_t *const root, const int nodePos, const int maxCodePointCount,
-        int *const outCodePoints, int *const outUnigramProbability) {
-    int pos = 0;
-    int wordPos = 0;
-
-    // One iteration of the outer loop iterates through nodes. As stated above, we will only
-    // traverse nodes that are actually a part of the terminal we are searching, so each time
-    // we enter this loop we are one depth level further than last time.
-    // The only reason we count nodes is because we want to reduce the probability of infinite
-    // looping in case there is a bug. Since we know there is an upper bound to the depth we are
-    // supposed to traverse, it does not hurt to count iterations.
-    for (int loopCount = maxCodePointCount; loopCount > 0; --loopCount) {
-        int lastCandidateGroupPos = 0;
-        // Let's loop through char groups in this node searching for either the terminal
-        // or one of its ascendants.
-        for (int charGroupCount = getGroupCountAndForwardPointer(root, &pos); charGroupCount > 0;
-                 --charGroupCount) {
-            const int startPos = pos;
-            const uint8_t flags = getFlagsAndForwardPointer(root, &pos);
-            const int character = getCodePointAndForwardPointer(root, &pos);
-            if (nodePos == startPos) {
-                // We found the address. Copy the rest of the word in the buffer and return
-                // the length.
-                outCodePoints[wordPos] = character;
-                if (FLAG_HAS_MULTIPLE_CHARS & flags) {
-                    int nextChar = getCodePointAndForwardPointer(root, &pos);
-                    // We count chars in order to avoid infinite loops if the file is broken or
-                    // if there is some other bug
-                    int charCount = maxCodePointCount;
-                    while (NOT_A_CODE_POINT != nextChar && --charCount > 0) {
-                        outCodePoints[++wordPos] = nextChar;
-                        nextChar = getCodePointAndForwardPointer(root, &pos);
-                    }
-                }
-                *outUnigramProbability = readProbabilityWithoutMovingPointer(root, pos);
-                return ++wordPos;
-            }
-            // We need to skip past this char group, so skip any remaining chars after the
-            // first and possibly the probability.
-            if (FLAG_HAS_MULTIPLE_CHARS & flags) {
-                pos = skipOtherCharacters(root, pos);
-            }
-            pos = skipProbability(flags, pos);
-
-            // The fact that this group has children is very important. Since we already know
-            // that this group does not match, if it has no children we know it is irrelevant
-            // to what we are searching for.
-            const bool hasChildren = (FLAG_GROUP_ADDRESS_TYPE_NOADDRESS !=
-                    (MASK_GROUP_ADDRESS_TYPE & flags));
-            // We will write in `found' whether we have passed the children address we are
-            // searching for. For example if we search for "beer", the children of b are less
-            // than the address we are searching for and the children of c are greater. When we
-            // come here for c, we realize this is too big, and that we should descend b.
-            bool found;
-            if (hasChildren) {
-                // Here comes the tricky part. First, read the children position.
-                const int childrenPos = readChildrenPosition(root, flags, pos);
-                if (childrenPos > nodePos) {
-                    // If the children pos is greater than address, it means the previous chargroup,
-                    // which address is stored in lastCandidateGroupPos, was the right one.
-                    found = true;
-                } else if (1 >= charGroupCount) {
-                    // However if we are on the LAST group of this node, and we have NOT shot the
-                    // address we should descend THIS node. So we trick the lastCandidateGroupPos
-                    // so that we will descend this node, not the previous one.
-                    lastCandidateGroupPos = startPos;
-                    found = true;
-                } else {
-                    // Else, we should continue looking.
-                    found = false;
-                }
-            } else {
-                // Even if we don't have children here, we could still be on the last group of this
-                // node. If this is the case, we should descend the last group that had children,
-                // and their address is already in lastCandidateGroup.
-                found = (1 >= charGroupCount);
-            }
-
-            if (found) {
-                // Okay, we found the group we should descend. Its address is in
-                // the lastCandidateGroupPos variable, so we just re-read it.
-                if (0 != lastCandidateGroupPos) {
-                    const uint8_t lastFlags =
-                            getFlagsAndForwardPointer(root, &lastCandidateGroupPos);
-                    const int lastChar =
-                            getCodePointAndForwardPointer(root, &lastCandidateGroupPos);
-                    // We copy all the characters in this group to the buffer
-                    outCodePoints[wordPos] = lastChar;
-                    if (FLAG_HAS_MULTIPLE_CHARS & lastFlags) {
-                        int nextChar = getCodePointAndForwardPointer(root, &lastCandidateGroupPos);
-                        int charCount = maxCodePointCount;
-                        while (-1 != nextChar && --charCount > 0) {
-                            outCodePoints[++wordPos] = nextChar;
-                            nextChar = getCodePointAndForwardPointer(root, &lastCandidateGroupPos);
-                        }
-                    }
-                    ++wordPos;
-                    // Now we only need to branch to the children address. Skip the probability if
-                    // it's there, read pos, and break to resume the search at pos.
-                    lastCandidateGroupPos = skipProbability(lastFlags, lastCandidateGroupPos);
-                    pos = readChildrenPosition(root, lastFlags, lastCandidateGroupPos);
-                    break;
-                } else {
-                    // Here is a little tricky part: we come here if we found out that all children
-                    // addresses in this group are bigger than the address we are searching for.
-                    // Should we conclude the word is not in the dictionary? No! It could still be
-                    // one of the remaining chargroups in this node, so we have to keep looking in
-                    // this node until we find it (or we realize it's not there either, in which
-                    // case it's actually not in the dictionary). Pass the end of this group, ready
-                    // to start the next one.
-                    pos = skipChildrenPosAndAttributes(root, flags, pos);
-                }
-            } else {
-                // If we did not find it, we should record the last children address for the next
-                // iteration.
-                if (hasChildren) lastCandidateGroupPos = startPos;
-                // Now skip the end of this group (children pos and the attributes if any) so that
-                // our pos is after the end of this char group, at the start of the next one.
-                pos = skipChildrenPosAndAttributes(root, flags, pos);
-            }
-
-        }
-    }
-    // If we have looked through all the chargroups and found no match, the address is
-    // not the address of a terminal in this dictionary.
-    return 0;
-}
-
-} // namespace latinime
-#endif // LATINIME_BINARY_FORMAT_H
diff --git a/native/jni/src/suggest/policyimpl/dictionary/patricia_trie_policy.cpp b/native/jni/src/suggest/policyimpl/dictionary/patricia_trie_policy.cpp
index 3e664a29b56f0e6ad18d9a6898fcdd770e73c665..15eb0674dc35dc8ed175d1516381be812c488442 100644
--- a/native/jni/src/suggest/policyimpl/dictionary/patricia_trie_policy.cpp
+++ b/native/jni/src/suggest/policyimpl/dictionary/patricia_trie_policy.cpp
@@ -20,7 +20,6 @@
 #include "defines.h"
 #include "suggest/core/dicnode/dic_node.h"
 #include "suggest/core/dicnode/dic_node_vector.h"
-#include "suggest/policyimpl/dictionary/binary_format.h"
 #include "suggest/policyimpl/dictionary/patricia_trie_reading_utils.h"
 
 namespace latinime {
@@ -38,17 +37,273 @@ void PatriciaTriePolicy::createAndGetAllChildNodes(const DicNode *const dicNode,
     }
 }
 
+// This retrieves code points and the probability of the word by its terminal position.
+// Due to the fact that words are ordered in the dictionary in a strict breadth-first order,
+// it is possible to check for this with advantageous complexity. For each node, we search
+// for groups with children and compare the children position with the position we look for.
+// When we shoot the position we look for, it means the word we look for is in the children
+// of the previous group. The only tricky part is the fact that if we arrive at the end of a
+// node with the last group's children position still less than what we are searching for, we
+// must descend the last group's children (for example, if the word we are searching for starts
+// with a z, it's the last group of the root node, so all children addresses will be smaller
+// than the position we look for, and we have to descend the z node).
+/* Parameters :
+ * nodePos: the byte position of the terminal chargroup of the word we are searching for (this is
+ *   what is stored as the "bigram position" in each bigram)
+ * outCodePoints: an array to write the found word, with MAX_WORD_LENGTH size.
+ * outUnigramProbability: a pointer to an int to write the probability into.
+ * Return value : the code point count, of 0 if the word was not found.
+ */
+// TODO: Split this function to be more readable
 int PatriciaTriePolicy::getCodePointsAndProbabilityAndReturnCodePointCount(
         const int nodePos, const int maxCodePointCount, int *const outCodePoints,
         int *const outUnigramProbability) const {
-    return BinaryFormat::getCodePointsAndProbabilityAndReturnCodePointCount(mDictRoot, nodePos,
-            maxCodePointCount, outCodePoints, outUnigramProbability);
+    int pos = getRootPosition();
+    int wordPos = 0;
+    // One iteration of the outer loop iterates through nodes. As stated above, we will only
+    // traverse nodes that are actually a part of the terminal we are searching, so each time
+    // we enter this loop we are one depth level further than last time.
+    // The only reason we count nodes is because we want to reduce the probability of infinite
+    // looping in case there is a bug. Since we know there is an upper bound to the depth we are
+    // supposed to traverse, it does not hurt to count iterations.
+    for (int loopCount = maxCodePointCount; loopCount > 0; --loopCount) {
+        int lastCandidateGroupPos = 0;
+        // Let's loop through char groups in this node searching for either the terminal
+        // or one of its ascendants.
+        for (int charGroupCount = PatriciaTrieReadingUtils::getGroupCountAndAdvancePosition(
+                mDictRoot, &pos); charGroupCount > 0; --charGroupCount) {
+            const int startPos = pos;
+            const PatriciaTrieReadingUtils::NodeFlags flags =
+                    PatriciaTrieReadingUtils::getFlagsAndAdvancePosition(mDictRoot, &pos);
+            const int character = PatriciaTrieReadingUtils::getCodePointAndAdvancePosition(
+                    mDictRoot, &pos);
+            if (nodePos == startPos) {
+                // We found the position. Copy the rest of the code points in the buffer and return
+                // the length.
+                outCodePoints[wordPos] = character;
+                if (PatriciaTrieReadingUtils::hasMultipleChars(flags)) {
+                    int nextChar = PatriciaTrieReadingUtils::getCodePointAndAdvancePosition(
+                            mDictRoot, &pos);
+                    // We count code points in order to avoid infinite loops if the file is broken
+                    // or if there is some other bug
+                    int charCount = maxCodePointCount;
+                    while (NOT_A_CODE_POINT != nextChar && --charCount > 0) {
+                        outCodePoints[++wordPos] = nextChar;
+                        nextChar = PatriciaTrieReadingUtils::getCodePointAndAdvancePosition(
+                                mDictRoot, &pos);
+                    }
+                }
+                *outUnigramProbability =
+                        PatriciaTrieReadingUtils::readProbabilityAndAdvancePosition(mDictRoot,
+                                &pos);
+                return ++wordPos;
+            }
+            // We need to skip past this char group, so skip any remaining code points after the
+            // first and possibly the probability.
+            if (PatriciaTrieReadingUtils::hasMultipleChars(flags)) {
+                PatriciaTrieReadingUtils::skipCharacters(mDictRoot, flags, MAX_WORD_LENGTH, &pos);
+            }
+            if (PatriciaTrieReadingUtils::isTerminal(flags)) {
+                PatriciaTrieReadingUtils::readProbabilityAndAdvancePosition(mDictRoot, &pos);
+            }
+            // The fact that this group has children is very important. Since we already know
+            // that this group does not match, if it has no children we know it is irrelevant
+            // to what we are searching for.
+            const bool hasChildren = PatriciaTrieReadingUtils::hasChildrenInFlags(flags);
+            // We will write in `found' whether we have passed the children position we are
+            // searching for. For example if we search for "beer", the children of b are less
+            // than the address we are searching for and the children of c are greater. When we
+            // come here for c, we realize this is too big, and that we should descend b.
+            bool found;
+            if (hasChildren) {
+                int currentPos = pos;
+                // Here comes the tricky part. First, read the children position.
+                const int childrenPos = PatriciaTrieReadingUtils
+                        ::readChildrenPositionAndAdvancePosition(mDictRoot, flags, &currentPos);
+                if (childrenPos > nodePos) {
+                    // If the children pos is greater than the position, it means the previous
+                    // chargroup, which position is stored in lastCandidateGroupPos, was the right
+                    // one.
+                    found = true;
+                } else if (1 >= charGroupCount) {
+                    // However if we are on the LAST group of this node, and we have NOT shot the
+                    // position we should descend THIS node. So we trick the lastCandidateGroupPos
+                    // so that we will descend this node, not the previous one.
+                    lastCandidateGroupPos = startPos;
+                    found = true;
+                } else {
+                    // Else, we should continue looking.
+                    found = false;
+                }
+            } else {
+                // Even if we don't have children here, we could still be on the last group of this
+                // node. If this is the case, we should descend the last group that had children,
+                // and their position is already in lastCandidateGroup.
+                found = (1 >= charGroupCount);
+            }
+
+            if (found) {
+                // Okay, we found the group we should descend. Its position is in
+                // the lastCandidateGroupPos variable, so we just re-read it.
+                if (0 != lastCandidateGroupPos) {
+                    const PatriciaTrieReadingUtils::NodeFlags lastFlags =
+                            PatriciaTrieReadingUtils::getFlagsAndAdvancePosition(
+                                    mDictRoot, &lastCandidateGroupPos);
+                    const int lastChar = PatriciaTrieReadingUtils::getCodePointAndAdvancePosition(
+                            mDictRoot, &lastCandidateGroupPos);
+                    // We copy all the characters in this group to the buffer
+                    outCodePoints[wordPos] = lastChar;
+                    if (PatriciaTrieReadingUtils::hasMultipleChars(lastFlags)) {
+                        int nextChar = PatriciaTrieReadingUtils::getCodePointAndAdvancePosition(
+                                mDictRoot, &lastCandidateGroupPos);
+                        int charCount = maxCodePointCount;
+                        while (-1 != nextChar && --charCount > 0) {
+                            outCodePoints[++wordPos] = nextChar;
+                            nextChar = PatriciaTrieReadingUtils::getCodePointAndAdvancePosition(
+                                    mDictRoot, &lastCandidateGroupPos);
+                        }
+                    }
+                    ++wordPos;
+                    // Now we only need to branch to the children address. Skip the probability if
+                    // it's there, read pos, and break to resume the search at pos.
+                    if (PatriciaTrieReadingUtils::isTerminal(lastFlags)) {
+                        PatriciaTrieReadingUtils::readProbabilityAndAdvancePosition(mDictRoot,
+                                &lastCandidateGroupPos);
+                    }
+                    pos = PatriciaTrieReadingUtils::readChildrenPositionAndAdvancePosition(
+                            mDictRoot, lastFlags, &lastCandidateGroupPos);
+                    break;
+                } else {
+                    // Here is a little tricky part: we come here if we found out that all children
+                    // addresses in this group are bigger than the address we are searching for.
+                    // Should we conclude the word is not in the dictionary? No! It could still be
+                    // one of the remaining chargroups in this node, so we have to keep looking in
+                    // this node until we find it (or we realize it's not there either, in which
+                    // case it's actually not in the dictionary). Pass the end of this group, ready
+                    // to start the next one.
+                    if (PatriciaTrieReadingUtils::hasChildrenInFlags(flags)) {
+                        PatriciaTrieReadingUtils::readChildrenPositionAndAdvancePosition(
+                                mDictRoot, flags, &pos);
+                    }
+                    if (PatriciaTrieReadingUtils::hasShortcutTargets(flags)) {
+                        mShortcutListPolicy.skipAllShortcuts(&pos);
+                    }
+                    if (PatriciaTrieReadingUtils::hasBigrams(flags)) {
+                        mBigramListPolicy.skipAllBigrams(&pos);
+                    }
+                }
+            } else {
+                // If we did not find it, we should record the last children address for the next
+                // iteration.
+                if (hasChildren) lastCandidateGroupPos = startPos;
+                // Now skip the end of this group (children pos and the attributes if any) so that
+                // our pos is after the end of this char group, at the start of the next one.
+                if (PatriciaTrieReadingUtils::hasChildrenInFlags(flags)) {
+                    PatriciaTrieReadingUtils::readChildrenPositionAndAdvancePosition(
+                            mDictRoot, flags, &pos);
+                }
+                if (PatriciaTrieReadingUtils::hasShortcutTargets(flags)) {
+                    mShortcutListPolicy.skipAllShortcuts(&pos);
+                }
+                if (PatriciaTrieReadingUtils::hasBigrams(flags)) {
+                    mBigramListPolicy.skipAllBigrams(&pos);
+                }
+            }
+
+        }
+    }
+    // If we have looked through all the chargroups and found no match, the nodePos is
+    // not the position of a terminal in this dictionary.
+    return 0;
 }
 
+// This function gets the position of the terminal node of the exact matching word in the
+// dictionary. If no match is found, it returns NOT_A_VALID_WORD_POS.
 int PatriciaTriePolicy::getTerminalNodePositionOfWord(const int *const inWord,
         const int length, const bool forceLowerCaseSearch) const {
-    return BinaryFormat::getTerminalPosition(mDictRoot, inWord,
-            length, forceLowerCaseSearch);
+    int pos = getRootPosition();
+    int wordPos = 0;
+
+    while (true) {
+        // If we already traversed the tree further than the word is long, there means
+        // there was no match (or we would have found it).
+        if (wordPos >= length) return NOT_A_VALID_WORD_POS;
+        int charGroupCount = PatriciaTrieReadingUtils::getGroupCountAndAdvancePosition(mDictRoot,
+                &pos);
+        const int wChar = forceLowerCaseSearch
+                ? CharUtils::toLowerCase(inWord[wordPos]) : inWord[wordPos];
+        while (true) {
+            // If there are no more character groups in this node, it means we could not
+            // find a matching character for this depth, therefore there is no match.
+            if (0 >= charGroupCount) return NOT_A_VALID_WORD_POS;
+            const int charGroupPos = pos;
+            const PatriciaTrieReadingUtils::NodeFlags flags =
+                    PatriciaTrieReadingUtils::getFlagsAndAdvancePosition(mDictRoot, &pos);
+            int character = PatriciaTrieReadingUtils::getCodePointAndAdvancePosition(mDictRoot,
+                    &pos);
+            if (character == wChar) {
+                // This is the correct node. Only one character group may start with the same
+                // char within a node, so either we found our match in this node, or there is
+                // no match and we can return NOT_A_VALID_WORD_POS. So we will check all the
+                // characters in this character group indeed does match.
+                if (PatriciaTrieReadingUtils::hasMultipleChars(flags)) {
+                    character = PatriciaTrieReadingUtils::getCodePointAndAdvancePosition(mDictRoot,
+                            &pos);
+                    while (NOT_A_CODE_POINT != character) {
+                        ++wordPos;
+                        // If we shoot the length of the word we search for, or if we find a single
+                        // character that does not match, as explained above, it means the word is
+                        // not in the dictionary (by virtue of this chargroup being the only one to
+                        // match the word on the first character, but not matching the whole word).
+                        if (wordPos >= length) return NOT_A_VALID_WORD_POS;
+                        if (inWord[wordPos] != character) return NOT_A_VALID_WORD_POS;
+                        character = PatriciaTrieReadingUtils::getCodePointAndAdvancePosition(
+                                mDictRoot, &pos);
+                    }
+                }
+                // If we come here we know that so far, we do match. Either we are on a terminal
+                // and we match the length, in which case we found it, or we traverse children.
+                // If we don't match the length AND don't have children, then a word in the
+                // dictionary fully matches a prefix of the searched word but not the full word.
+                ++wordPos;
+                if (PatriciaTrieReadingUtils::isTerminal(flags)) {
+                    if (wordPos == length) {
+                        return charGroupPos;
+                    }
+                    PatriciaTrieReadingUtils::readProbabilityAndAdvancePosition(mDictRoot, &pos);
+                }
+                if (!PatriciaTrieReadingUtils::hasChildrenInFlags(flags)) {
+                    return NOT_A_VALID_WORD_POS;
+                }
+                // We have children and we are still shorter than the word we are searching for, so
+                // we need to traverse children. Put the pointer on the children position, and
+                // break
+                pos = PatriciaTrieReadingUtils::readChildrenPositionAndAdvancePosition(mDictRoot,
+                        flags, &pos);
+                break;
+            } else {
+                // This chargroup does not match, so skip the remaining part and go to the next.
+                if (PatriciaTrieReadingUtils::hasMultipleChars(flags)) {
+                    PatriciaTrieReadingUtils::skipCharacters(mDictRoot, flags, MAX_WORD_LENGTH,
+                            &pos);
+                }
+                if (PatriciaTrieReadingUtils::isTerminal(flags)) {
+                    PatriciaTrieReadingUtils::readProbabilityAndAdvancePosition(mDictRoot, &pos);
+                }
+                if (PatriciaTrieReadingUtils::hasChildrenInFlags(flags)) {
+                    PatriciaTrieReadingUtils::readChildrenPositionAndAdvancePosition(mDictRoot,
+                            flags, &pos);
+                }
+                if (PatriciaTrieReadingUtils::hasShortcutTargets(flags)) {
+                    mShortcutListPolicy.skipAllShortcuts(&pos);
+                }
+                if (PatriciaTrieReadingUtils::hasBigrams(flags)) {
+                    mBigramListPolicy.skipAllBigrams(&pos);
+                }
+            }
+            --charGroupCount;
+        }
+    }
 }
 
 int PatriciaTriePolicy::getUnigramProbability(const int nodePos) const {